

Course Unit	Molecular Biology			Field of study	Science Base		
Bachelor in	Biomedical Laboratory Sciences			School	School of Health		
Academic Year	2021/2022	Year of study	1	Level	1-1	ECTS credits	5.0
Туре	Semestral	Semester	2	Code	9995-550-1203-00-21		
Workload (hours)	135	Contact hours		22,5 PL 30 T		E - OT - Fieldwork; S - Seminar; E - Place	7,5 O -
Name(s) of lecturer(s) Altino Branco Chounina							

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Knowing the genetic: DNA as the genetic material, its chemical nature and structural characteristics. Identify the structure and organization of the genome of different organisms.
- 3. Knowing the genetic mechanisms of replication, transcription and translation in prokaryotes and eukaryotes and applying the genetic code to determine the protein amino acid sequence.
- A Justify as the amino acid sequence of a protein reflects its location and function explain the post-translational modifications that may suffer.

 5. Understanding the genetic information in bacteria. Identify key recombinant DNA tools. Understand the importance of the methods of recombinant DNA and its application in different cloning systems.

 6. Relating directed mutagenesis and structure / function of the protein. Establish the applications of molecular cloning to develop products of medical interest.

 7. Understand the importance of genomic sequences analysis and genomes. Understanding gene expression. Make the analysis of transcriptomes and deduct their
- applications
- 8. Establish the multiple applications of the methodologies of Molecular Biology in Medical and Pharmaceutical Sciences.

Prerequisites

- Before the course unit the learner is expected to be able to:
 1. knowledge, in generally, the biology, biochemistry, genetics, molecular biology and microbiology.
 2. knowledge of English

Course contents

Introduction to genetic bases. Eukaryotic and prokaryotes genomes. The replication and transcription of DNA in prokaryotes and eukaryotes. Translation. Genetic code. Modification post-translation and subcellular targeting of proteins. Basic Molecular Biology techniques used in medicine: PCR, hybridization analysis, DNA sequencing, RFLP, analysis of transcriptomes, among others. Recombinant DNA technology and site-directed mutagenesis. Genomes sequencing and Human Genome Project.

Course contents (extended version)

- Introduction to genetic bases
 Identification of DNA as the Genetic Material
 Chemical composition of DNA and RNA
 DNA structure: A, B and Z forms of DNA
- DNA structure: A, B and Z forms of DNA
 Positive and negative supercoiling
 2. Different types of genome: Eukaryotic, prokaryotes and virus genomes
 Classification of viruses according to their genome
 Bacterial genomes and plasmids
 Organelle genomes. Mitochondrial and chloroplast genome
 Nuclear Genome. Complexity of genomes
 Repetitive and Non Repetitive DNA. Tandem and dispersed repetitive DNA
 Mobile nucleotide sequences IS elements, transposons and retrotransposon
 3. DNA Replication
- 3. DNA Replication
 - Origins of replication in prokaryotes and eukaryotes
 DNA replication in prokaryotes
 DNA replication in eukaryotes

- Transcription
 Structure of RNA: rRNA, tRNA and mRNA
- Structure of RNA. TRNA, IRNA and mixina
 Steps of the transcription: initiation, elongation and termination
 Enzymatic system responsible for the transcription process
 5. Translation and Genetic Code
 Protein synthesis: stages, factors and enzymes
 6. Basic Molecular Biology techniques used in medicine
 DNA and RNA extraction

 Maginulating of synthic points basic tools and techniques (Flori

- DNA and NNA extraction
 Manipulation of nucleic acids: basic tools and techniques (Electrophoresis, Hybridization, PCR, etc)
 7. Recombinant DNA technology
 Enzymes used in the production of recombinant DNA
 Molecular Cloning: Vectores and strategy for cloning
 Application of molecular cloning in the production of pharmaceutical compounds and disease diagnosis
 Sequencing and analysis of genomic sequences.

 - Genomes sequencing and importance of Human Genome Project in health sciences.

Recommended reading

- Allison L. A. (2012) Fundamentals of Molecular Biology, 2nd Edition, Wiley-Blackwell
 Azevedo C., Sunkel C. (2012) Biologia Celular e Molecular, Lidel.
 Krebs J. E., Goldstein E. S., Kilpatrick S. T. (2012) Lewin's GENES XI, 11 ed. Jones & Bartlett Learning
 Shashikant Kulkarni, John Pfeifer (2015) Clinical Genomics: A guide to Clinical Nex Generation Sequencing, 1st Edition. Amazon. com
 Geoffrey S. Ginsburg and Huntington F. Willard (2013) Genomic and Personalized Medicine (Second Edition). Elsevier

Teaching and learning methods

Lectures using power point presentations. Lectures notes deposited in the e-learning resources. Laboratory classes.

Assessment methods

- Alternative - (Regular, Student Worker) (Final, Supplementary, Special) - Final Written Exam - 100% (Practical evaluation, 30%)

Language of instruction

Portuguese

Electronic validation

Electronic validation					
Altino Branco Choupina	Josiana Adelaide Vaz	Ana Maria Nunes Português Galvão	Adília Maria Pires da Silva Fernandes	ĺ	
25-02-2022	28-02-2022	28-02-2022	28-02-2022	ı	