

Course Unit	Biostatistics			Field of study	Science Base		
Bachelor in	nelor in Biomedical Laboratory Sciences			School	School of Health		
Academic Year	2022/2023	Year of study	1	Level	1-1	ECTS credits	4.0
Туре	Semestral	Semester	1	Code	9995-550-1102-00-22		
Workload (hours)	108	Contact hours			C - S -	E - OT	
Name(s) of lecturer(s) Marcio Soares Carocho							

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- . do a correct sampling . characterize data

- apply statistic methods
 interpret the results

Prerequisites

Before the course unit the learner is expected to be able to:

Course contents

Review of the techniques of integration Descriptive statistics Probability theory Random variables. Probability Distribution Functions. Statistics Estimation (one Sample) Simple Regression analysis

Course contents (extended version)

- 1. Integral calculus review
- Descriptive Statistics
 Introduction

 - Statistics objectives
 - Types of data and measurement uncertainties
 Population and sampling
 Statistics and central tendency measures

 - Dispersion measures
 - Graphical presentation of the frequency table
 Other statistics

- Other statistics
 3. Probability Theory
 Basic notions
 Probability
 Frequency distributios
 Random variables
 4. Probability Distribution
 Introduction
 Discrete distributions
 Hypergeometric Distribution
 Binomial distribution
 Poisson distribution

 - Poisson distribution
 Random variables

 - Continuous distributions Gauss distribution
- 5. Significance tests
 Statistical hypothesis
 Null hypothesis
 Significance level
- Sampling distribution
 Distribution of sample mean
- Central limit theorem
 Non-parametris and parametric tests (one sample)
 Simple linear regression

Recommended reading

- Triola, M.F., Biostatistics for the biological and health sciences (2013). Pearson Education
 Guimarães, R. C. & Cabral, J. (1999). Estatística. Lisboa: Mac Graw-Hill.
 Patrício, M. Loureiro, M., Caramelo, F., Bioestatística com SPSS, abordagem prática, 2017, Plátano Editora

Teaching and learning methods

Expository, demonstrative and intercative

Assessment methods

- Alternative Working students (Student Worker) (Final, Supplementary, Special)
 Final Written Exam 100%
 Ordinary Alternative (Regular) (Final, Supplementary)
 Final Written Exam 100%

Language of instruction

Portuguese

	Electronic validation				
Marcio Soares Carocho Jos		Josiana Adelaide Vaz	Ana Maria Nunes Português Galvão	Adília Maria Pires da Silva Fernandes	
	03-11-2022	03-11-2022	03-11-2022	03-11-2022	