

Course Unit	Exercise Physiology			Field of study	Health Sciences	
Bachelor in	Physiotherapy			School	School of Health	
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits 4.0
Туре	Semestral	Semester	2	Code	9504-770-1204-00-23	
Workload (hours)	108	Contact hours			C - S -	E - OT 20 O Fieldwork; S - Seminar, E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s) Mário Alexandre Gonçalves Lopes, Pedro Miguel Queirós Pimenta Magalhaes

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to:

 1. Describe in detail the functioning of the energy systems according to the characteristics of physical exercise.

 2. Understand and interpret accurately the process of muscle contraction during physical exercise.

 3. Know and interpret the physiological events that occur during the recovery period after exercise in different environmental conditions.

 4. Describe in detail the functioning of the neuromuscular, cardiovascular, respiratory and endocrine systems during physical exercise.

 5. Describe the mechanisms involved in the acute and chronic adaptations to physical exercise.

Prerequisites

Before the course unit the learner is expected to be able to: Not applicable

Course contents

A. Introduction to exercise physiology; B. Energy systems; C. Muscle structure and function; D. Neuromuscular adaptations to training; E. Cardiorespiratory adaptations; F. The endocrine system and physical exercise; G. Exercises in hyperbaric and hypobaric environments

Course contents (extended version)

- Introduction to exercise physiology
 Concepts of sports medicine, kinesiology and exercise physiology
 Acute adaptations to physical exercise

 - Chronic adaptations to training
- 2 Power systems
 - · Alactic anaerobic system
 - Anaerobic lactic system

- Anaerobic lactic system
 Aerobic system
 Metabolic adaptations to exercise
 Metabolic adaptations to training
 Muscle structure and function
 Skeletal muscle and exercise
 Skeletal muscle adaptations to training
- Neuromuscular adaptations to training
 Neural control of muscle movement
 - Strength gains

- Strengtn gains
 Differences depending on sex and age
 Cardiorespiratory adaptations
 Cardiovascular adaptations to exercise and training
 Breathing adjustments to exercise
 Assessment of aerobic capacity

- Assessment of aerobic capacity
 The endocrine system and physical exercise
 Hormone secretion glands
 Hormonal response to exercise
 Exercises in hyperbaric and hypobaric environments

 - Exercise at altitude

 Acute and chronic adaptations to altitude
 - Physiological responses to diving

Recommended reading

- Brooks, G. A., Fahey, T. D., & White, T. P. (2000). BKM Exercise physiology: Human bioenergetics and its applications.
 FOSS, ML; KETEYIAN, SJ (2000). Bases fisiológicas do exercício e do esporte. (6ª Edição). Editora Guanabara Koogan.
 Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2021). Physiology of sport and exercise. Human kinetics.
 Powers, S. K., Howley, E. T., & Quindry, J. (2007). Exercise physiology: Theory and application to fitness and performance (p. 640). New York, NY: McGraw-Hill.
 McArdle, W.D.; Watch, F.I.; Watch, V.L. (2019). Fisiologia do Exercício (8ª Edição). Guanabara Koogan.

Teaching and learning methods

Oral presentation and through multimedia.

Completing worksheets.

Research work, analysis and interpretation of text/scientific articles. Development of learning situations.

Assessment methods

- Continuous evaluation (Regular, Student Worker) (Final)
 Intermediate Written Test 60% (Two mini-tests)
 Practical Work 30% (Group work)
 Practical Work 10% (Individual development work)
 Exam evaluation (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 100% (Final written exam)

Language of instruction

- Portuguese
 Portuguese, with additional English support for foreign students.

	Electronic validation			
Mário Alexandre Gonçalves Lopes, Pedro Miguel Queirós Pimenta Magalhaes Adília Maria Pires		Adília Maria Pires da Silva Fernandes	Ana Maria Nunes Português Galvão	Olívia Rodrigues Pereira
Г	03-04-2024	07-04-2024	07-04-2024	09-04-2024