

Master in Applied Health Sciences - Biotechnology School School of Health Academic Year 2022/2023 Year of study 1 Level 2-1 ECTS credits 4.5	Course Unit Evaluation of biologic	al activity	Field of study	Biotechnology	
	Master in Applied Health Scien	Applied Health Sciences - Biotechnology		School of Health	
	Academic Year 2022/2023	Year of study	Level	2-1 ECTS credits 4.5	
Type Semestral Semester 2 Code 5055-669-1201-00-22	Type Semestral	Semester 2	Code	5055-669-1201-00-22	
Workload (hours) 121,5 Contact hours T - TP - PL - TC - S - E - OT - O 42 T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar, E - Placement; OT - Tutorial; O - Oth	Workload (hours) 121,5				

Name(s) of lecturer(s) Josiana Adelaide Vaz, Marcio Soares Carocho

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Recognize the importance of bioactivity of natural products

 To know the basic mechanisms of antioxidant activity, anticancer, anti-inflammatory, antimicrobial, antimalarial, analgesic activity

- 3. Relate biological activity to bioactive compounds
 4. Distinguish in vivo, in vitro and ex vivo bioassay evaluation procedures
 5. Apply in vitro screening techniques for evaluating the biological activity of natural products
 6. Analyze and discuss experimental results

Prerequisites

Not applicable

Course contents

From the screening of biological activity of natural products to the drug Molecular modeling and prediction of bioactivity Bioactivity of matrices and natural products In vivo, in vitro and ex vivo bioactivity evaluation procedures

Course contents (extended version)

- From the screening of biological activity of natural products to the drug
 Molecular modeling and prediction of bioactivity
 Bioactivity of matrices and natural products
 Antinoidant, anticancer, anti-inflammatory activities
 Antimicrobial, antimalarial, analgesic and antihypertensive activities
 Basic mechanisms and related bioactivity compounds
- In vivo, in vitro and ex vivo bioactivity evaluation procedures
 In vitro screening techniques for assessing biological activity
 Cell culture

- Cell culture
 In vivo and ex vivo assays involving animal experimentation
 In the laboratory component: screening of biological activity in several matrices, namely:

 antioxidant, antimicrobial and antitumor activities,
 establishing a correlation between those activities and the chemical composition of the extracts.

Recommended reading

- Rahman A., Choudhary M. I., Thompson W. Bioassay Techniques for Drug Development. 2001. Harwood Academic Publishers.
 William A. Pryor. Bio-Assays for Oxidative Stress Status. 2001. Elsevier
 Vogel, Hans G. Drug Discovery and Evaluation: Pharmacological Assays. 2008. 3^a Ed. Springer Willow

- 4. J. H. Liu. Traditional Herbal Médicine Research Methods: Identification, Analysis, Bioassay, and Pharmaceutical and Clinical Studies. 2011

Teaching and learning methods

The lectures are taught using videoconferencing technology and shared with Professor Paula Coutinho from IPG. The lecture, tutorial, demonstrative, active, problem solving and simulation methods are integrated in the different types of teaching learning: theoretical-practical (TP), practical and laboratory (PL), and tutorial orientation

Assessment methods

- Unique Alternative (Regular, Student Worker) (Final, Supplementary, Special)
 Portfolio 60% (Portfolio of biological activities from a matrix of choice. Communication written on poster.)
 Presentations 30% (Pitch model presentation)
 Presentations 10% (Self-evaluation)

Language of instruction

Portuguese, with additional English support for foreign students

Electronic validation

Eloculoriio validation					
	Josiana Adelaide Vaz	Ana Maria Geraldes Rodrigues Pereira	Juliana Almeida de Souza	Adília Maria Pires da Silva Fernandes	
	01-06-2023	01-06-2023	28-06-2023	28-06-2023	