

Course Unit	Databases II			Field of study	Information Systems	
Bachelor in	Informatics and Communications			School	School of Public Management, Communication and Tourism	
Academic Year	2022/2023	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9188-320-2101-00-22	
Workload (hours)	162	Contact hours			c - s -	
			T - Lectures; TP - Lectures a	and problem-solving; PL - Problem	solving, project or laboratory; TC	- Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Oth

Name(s) of lecturer(s) Elisabete da Anunciacao Paulo Morais

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

Modeling databases using object oriented models and implement them.
 Acquire fundamental concepts of Distributed Databases.

Prerequisites

Before the course unit the learner is expected to be able to: Relational Databases Concepts and SQL language

Course contents

Modeling and project object oriented: Modeling of Objects, Object Model versus Relational Model. Concepts of Distributed Databases: Centralized System, Client / Server Architecture, Distributed Architecture, Distributed Architecture, Distributed Architecture based on Internet, Parallel Architecture. Data Replication. Data Fragmentation. Characteristics of a distributed database. Design of Distributed Databases. DDB heterogeneous. Management of DDB. Installation and configuration of DBMS.

Course contents (extended version)

- Modeling and project object oriented:
 Modeling

 - Abstraction
 - Models object oriented
 - Characteristics of objects

 - Characteristics of objects
 Development of OO
 Modeling Objects
 Objects, classes, links, associations, operations and methods
 Generalization, Inheritance and Multiple Inheritance

 - Groupings-Aggregation
 Object Model versus Relational Model
- Concepts of Distributed Databases
 Centralized System
 Architecture Client / Server
 Distributed Architecture

 - Distributed architecture based on Internet
 Parallel Architecture
- Parallel Architecture
 Data Fragmentation and data replication
 Characteristics of a Distributed Database
 Design of Distributed Databases
 Processing and optimization queries
 Heterogeneous Distributed Databases
 Management Distributed Databases

- Installation, configuration and implementation of administrative tasks on DBMSs

 Creation of store procedures

 - Creation of triggers Users management
 - Roles Creation

Recommended reading

- Rosa, A. (2018). SQL Server 2016, Curso Completo. Lisboa: FCA Editora de Informática. [ISBN: 978-972-722-886-7]
 Damas, L. (2017). SQL 14ª Edição Actualizada e Aumentada. Lisboa: FCA Editora de Informática. [ISBN: 978-972-722-829-4]
 Pereira, J. L. (1998). Tecnologia de Bases de Dados (3ª edição). Lisboa: FCA Editora de Informática. [ISBN: 972-722-143-2]
 Nunes, M. e O'Neill, H. (2004). Fundamental de UML 3ª Edição Actualizada e Aumentada. Lisboa: FCA Editora de Informática. 978-972-722-481-4
 Ramos, P. (2007). Desenhar Bases de Dados com UML (2ª edição). Lisboa: Edições silabo. [ISBN 978-972-618-474-4]

Teaching and learning methods

This course is taught through theoretical and practical classes (there is always the theoretical framework and then examples / exercises), and if this is conducive, it can be turned into lessons for monitoring the practical work.

Assessment methods

- 1. Distributed assessment (Regular, Student Worker) (Final, Supplementary, Special) Practical Work 50% (Minimum grade seven values.) Final Written Exam 50% (Minimum grade seven values.)

 2. Continuos assessment (Regular, Student Worker) (Final, Supplementary) Practical Work 50% (Minimum grade seven values.) Intermediate Written Test 20% (Minimum grade seven values.) Intermediate Written Test 20% (Minimum grade seven values.) Development Topics 10%

 3. Mobility Studentes (Regular) (Final, Supplementary, Special) Practical Work 100%

Language of instruction

 $\label{portuguese} \mbox{Portuguese, with additional English support for foreign students.}$

Electronic validation

Elisabete da Anunciacao Paulo Morais	Vítor José Domingues Mendonça	Elisabete da Anunciacao Paulo Morais	Luisa Margarida Barata Lopes	
03-10-2022	09-10-2022	10-10-2022	13-10-2022	