

Course Unit	Operating Systems			Field of study	Network and Computer Systems		
Bachelor in	Informatics and Communications			School	School of Public Management, Communication and Tourism		
Academic Year	2021/2022	Year of study	1	Level	1-1	ECTS credits	6.0
Туре	Semestral	Semester	2	Code	9188-320-1205-00-21		
Workload (hours)	162	Contact hours		30 PL 30 T			
Name(s) of lecturer(s) M c l 5	deira Goncalves					

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:

 1. know the fundamental principles of the architecture and operation of modern operating systems

 2. master a set of basic concepts and techniques on system-level programming, using Linux as reference environment

Prerequisites

Before the course unit the learner is expected to be able to:

- know how to program in a language with support to system-level programming (preferably C)
 master fundamental concepts on Computer Architectures

Course contents

Introductory Concepts, Operating System Structures, Processes, CPU Scheduling, Process Synchronization, Main Memory, Virtual Memory, File-System. System-Level Programming in Linux.

Course contents (extended version)

- Introductory Concepts
 Operating System Concept
 Computing System Operation
 Hardware Protection
 Specialised Systems and Environments
 Operating System Structures
 System Services
- User Interfaces

- Oser Interlaces
 System Calls
 System Programs
 System Design and Implementation
 Operating System Structure
 System Generation

- Processes
 Process Concept
 Process Scheduling
 Operations on Processes
- Operations on Processes
 Interprocess Communication
 Client-Server Communication
 CPU Scheduling
 Basic Concepts
 Scheduling Criteria
 Scheduling Algorithms
 Scheduling in Multiprocessor Systems
 Scheduling in Real-Time Systems
 Scheduling in Real-Time Systems
 Process Synchronization
 Basic Concepts
 The Critical-Section Problem
 Peterson's Solution
 Synchronization Hardware

- Synchronization Hardware
 Locks and Semaphores
 Classical Problems of Synchronization
 Main Memory
- - Basic Concepts
 Address Binding
- Address Binding
 Swapping
 Contiguous Allocation
 Paging
 Segmentation
 7. Virtual Memory
 Demand Paging
 Conventibility

 - Copy-on-Write Page Replacement
 - Allocation of Frames
- Thrashing
- 8. File-System
 File-System Architecture

 - File-System Implementation Allocation Methods Free-Space Management Efficiency and Performance
- Recovery
 System-Level Programming in Linux
 Process Management
 Files and Pipes

 - Shared Memory
 Semaphores

document is valid only if stamped in all pages

Recommended reading

- 1. Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating system concepts (10th ed). Hoboken, NJ: John Wiley & Sons. ISBN: 978-1-119-32091-3
 2. Silberschatz, A., Galvin, P. B., & Gagne, G. (2015). Fundamentos de sistemas operacionais (9a. ed.). Rio de Janeiro: Grupo Gen LTC. ISBN: 978-8521629399
 3. Rufino, J. (2020). Programação de nível sistema em linux. Bragança: ESTiG/IPB
 4. Kerrisk, M. (2012). The linux programming interface. San Francisco, CA: No Starch Press. ISBN: 978-1593272203
 5. Love, R. (2013). Linux system programming (2nd ed). Sebastopol, CA: OReilly. ISBN-13: 978-1449339531

Teaching and learning methods

The unit will be primarily taught using lectures that alternate the exposition of theoretical concepts with the resolution of exercises, complemented by practical works (optional) to be solved outside classes. All documentation (slides, exercises, solutions, assignments) will be provided through e-learning facilities.

Assessment methods

- 1. Alternative 1 (Regular, Student Worker) (Final)
 Intermediate Written Test 30% (First Intermediate Test: theoretical part 1 (units 1 and 2) + practical part 1 (unit 9. a))
 Intermediate Written Test 35% (Second Intermediate Test: theoretical part 2 (units 3, 4 and 7) + practical part 2 (unit 9. b))
 Final Written Exam 35% (Normal Epoch Exam: theoretical part 3 (units 5 and 6) + practical part 3 (units 9. c and 9. d))

 2. Alternative 2 (Regular, Student Worker) (Supplementary)
 Final Written Exam 100% (Final Epoch Exam: structured in the same 6 parts of the intermediate tests and normal epoch exam)

 3. Alternative 2 (Regular, Student Worker) (Special)
 Final Written Exam 100% (Exam on all topics subject to evaluation, without reusing any previous grades)

Language of instruction

Portuguese

lectr			

Martinho Fradeira Goncalves	Vítor José Domingues Mendonça	Elisabete da Anunciacao Paulo Morais	Luisa Margarida Barata Lopes
03-03-2022	10-03-2022	16-03-2022	20-03-2022