

Course Unit	Programming Languages I			Field of study	Computer Science			
Bachelor in	Informatics and Communications			School	School of Public Management, Communication and Tourism			
Academic Year	2022/2023	Year of study	1	Level	1-1	ECTS credits	6.0	
Туре	Semestral	Semester	1	Code	9188-320-1104-00-22			
Workload (hours)	162	Contact hours			C - S -	E - Fieldwork; S - Seminar; E - Place	20 O -	
Name(s) of lecturer(s) Ana Sofia da Fonte Pereira								

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Develop algorithms that solve given problems efficiently; solve computing problems in effective ways. Translate algorithms into programs, using a programming language;
- 3. Use good programming skills.

Prerequisites

Before the course unit the learner is expected to be able to:
1. Understand formal and mathematical notations;
2. Solve simple linear equations.

Course contents

Algorithms; General Programming Concepts;
Preparation and execution of programs;
Identifiers and reserved words; Elementary Data Types; Operations: arithmetic and logic; Decision and repetition structures; Vectors, strings and structs; Linear search and bubble sorting; Basics of pointers; Functions (parameters and scope);
Libraries standard (string. h and math. h) and custom;
Files, reading and writing.

Course contents (extended version)

- 1. General concepts of problems decomposition and algorithms

- 1. General concepts of problems decomposition and algorithms

 Introduction to the concept of algorithm and structured programming;

 Specification of an algorithmic language (natural language, pseudocode and flowchart);

 2. Programming Basics (in C):

 General concepts; Preparation and execution of a program.

 Structure of a program, commonly used libraries and introduction to syntax c.

 Elementary concepts: identifiers, reserved words;

 Flow control structures: if . . else if . . else; for; do while; while.

 Vectors, strings and structs.

 Arrays searching and sorting.

 Introduction to scorers.

 Declaration and definition of functions.

 Standard C libraries; custom libraries.

 Reading and writing files.

Recommended reading

- 1. Damas, Luís. Linguagem C, 24ª edição, FCA Editora de Informática, 1999. ISBN: 978-972-722-156-1 2. Guerreiro, Pedro. Elementos de Programação com C, 3ª edição, FCA Editora de Informática, 2006. ISBN: 978-972-722-510-1 3. Deitel, Paul; Deitel, Harvey M.. C: How to program, 8th edition, Deitel & Associates, Inc, Prentice-Hall, 2014. ISBN: 978-0133976892
- 4. Slides de suporte às aulas.

Teaching and learning methods

Theoretical and practical: one part consisting of exposure to theoretical problems which arise and offer solutions followed by a part of problems and assignments to be held in class and in tutorial classes, which aims to consolidate the theoretical concepts discussed. Laboratory practice: lessons, which is shown through simulation and testing the concepts already developed.

Assessment methods

- Evaluation along the semester (Regular, Student Worker) (Final)
 Intermediate Written Test 30% (Minimum grade: 8 points.)
 Intermediate Written Test 30% (Minimum grade: 8 points.)
 Practical Work 40% (Includes the completion of two projects. Minimum score of 8 points)
 Written exam (theoretical part + practical part) (Regular, Student Worker) (Supplementary, Special)

Language of instruction

Portuguese, with additional English support for foreign students

Electronic validation

_	Licotronic validation			
	Ana Sofia da Fonte Pereira	Vítor José Domingues Mendonça	Elisabete da Anunciacao Paulo Morais	Luisa Margarida Barata Lopes
ſ	13-10-2022	16-11-2022	16-11-2022	21-11-2022