

Course Unit	Discrete Mathematics			Field of study	Mathematical and Quantitative Methods	
Bachelor in	Informatics and Communications			School	School of Public Management, Communication and Tourism	
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9188-320-1103-00-23	
Workload (hours)	162	Contact hours	Т - ТР	60 PL - T	c - s -	E - OT 20 O -
			T - Lectures; TP - Lectures a	nd problem-solving; PL - Problem-	solving, project or laboratory; TC	- Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Ines Monteiro Barbedo de Magalhaes Name(s) of lecturer(s)

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the rearrier is expected to be able to:
 1. get the logical value of a logical expression known its entrances; simplify logical expressions;
 2. know the operations on sets and apply them in problem solving;
 3. know some counting techniques and apply them in problem solving;
 4. read numbers in some bases and to convert them to different bases; capable to operate in fixed and floating point;
 5. prove conjectures using the method of mathematical induction;
 6. operate in modular arithmetic; identify order relations;

- 7. construct graphs and identify its proprieties;
 8. determine spanning trees and optimal paths in connected graphs.

Prerequisites

Before the course unit the learner is expected to be able to:

use the language and elementary techniques of mathematics learned in secondary and basic education.

Course contents

Propositional Calculus. Elementary set theory. Elementary counting techniques. Numeral systems. Induction and recursion. Binary relations. Introduction on graph theory.

Course contents (extended version)

1. LOGIC

- Propositional Calculus:
- Logical operations on proposals: negation, conjunction and disjunction;
- Implication and equivalence;
- Truth tables;
 Properties of the propositional calculus;
 Logical operations on conditions;
- Expressions with variables:

- Expressions with variables,
 Quantifiers;
 Simplification of logical expressions.
 ELEMENTARY SET THEORY
 Equality of sets: extension axiom;
 Inclusion;
 Null set and singular set;

 - Null set and singular set;
 Union, intersection and complementary sets;
 - Venn's diagrams;
 Cartesian product and powerset of a sets;
 Properties of set operation;

- Cardinality. 3. ELEMENTARY COUNTING TECHNIQUES

- The adiction rule, inclusion- exclusion rule and multiplication rule; Simple arrangements and composites, permutations;

- Simple analgements and composites, permutations,
 Combinations;
 Arrangement and combination with repetition.
 NUMERAL SYSTEMS
 Positional and non-positional numeral systems;
 Numeral bases and decimal, binary, octal and hexadecimal bases;
 Converting from decimal base to other bases;
 Converting from decimal base to other bases;

 - Converting between binary, octal and hexadecimal bases; Signed integers representations: sign-magnitude and complements;

- Signed integers representations: sign-magnitude and complements;
 Fixed-point arithmetic;
 Floating-point representation.
 INDUCTION AND RECURSION
 Sequences. Defining sequences by general formula and recursively;
 Mathematical induction;
 Proving properties by induction.
 BINARY RELATIONS
 Definition and properties of the binary relations;
 Equivalence relation and elace of equivalence:
- Definition and properties of the binary relations
 Equivalence relation and class of equivalence;
 Congruencies: examples of application;
 Order relations and Hasse diagrams.
 INTRODUCTION TO GRAPH THEORY
- Simple graphs, connected, bipartite, complete graphs, Euler graphs and Hamilton; Minimum spanning tree Kruskal's algorithm and Prim's algorithm;

- Digraphs;
 Binary tree of Huffman's algorithm.
- Recommended reading

1. CARDOSO, D., SZYMANSKI, J. & ROSTAMI, M. (2009). Matemática Discreta: Combinatória, Teoria dos Grafos, Algoritmos. Escolar Editora [ISBN-13: 978-972-

- 592-237-8] 2. EPP, Susanna (2011). Discrete Mathematics and Applications (4th ed.). Brooks/Cole CENGAGE Learning [ISBN-13: 978-0-495-82616-3] 3. GOODAIRE, E. G. & PARMENTER, M. (2006). Discrete Mathematics with Graph Theory. (3rd ed.). Pearson [ISBN-13: 978-0131679955]

This

Recommended reading

4. LEVIN, Oscar (2018). Discrete Mathematics An open introduction (3rd ed.). SMS University of Northern Colorado [ISBN-13: 978-1792901690] 5. BARBEDO, Inês (2018) Apontamentos de Matemática Discreta, EsACT

Teaching and learning methods

For each subject they are considered periodically, with antecedence, modules of work with communication of the contents; solved exercises; exercises of guided resolution; complementary exercises, stimulating the work in equips; The lessons will be guided in the direction of to check the difficulties of execution of the considered works; to explain contents and examples on the practical cases.

Assessment methods

- Final Evaluation (incoming students) (Regular, Student Worker) (Final, Supplementary, Special)
 Practical Work 50% (3 out of 4 possible)
 Final Written Exam 50% (All syllabus (minimum mark 7 points in 20))

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation			
Ines Monteiro Barbedo de Magalhaes	Vítor José Domingues Mendonça	Anabela Neves Alves de Pinho	Luisa Margarida Barata Lopes
13-10-2023	13-10-2023	15-10-2023	16-10-2023