

Course Unit	Course Unit Artificial Intelligence			Field of study	Computer Science		
Bachelor in	Game Design			School	School of Public Management, Communication and Tourism		
Academic Year	2023/2024	Year of study	3	Level	1-3	ECTS credits 6.0	
Туре	Semestral	Semester	1	Code	8309-801-3105-00-23		
Workload (hours)	162	Contact hours				E OT O	
Name(s) of lecturer(s	s) João Paulo P	ereira de Sousa					

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:

 1. Discern when should use a classical solution and discern when should use an inductive solution

 2. Establish a chronological and functional sight on the techniques of AI and its connections to other sciences

 3. Know and understand the functioning of the artificial intelligence main models

 4. Implement properly the AI knowledge in solving practical problems

 5. Understand the limitations and advantages of the AI techniques

 6. Adapt the AI techniques to specific case studies, for example: Pattern Recognition problems; path finding; games.

Prerequisites

Before the course unit the learner is expected to be able to:

- 1. Know how to implement algorithmic solutions in a classical mode 2. Know the fundamentals of linear algebra and logic.

Course contents

Introduction to Artificial Intelligence. Chasing and evading. Pattern, flocking and potential function-based movement. Basic and A* pathfinding. Scripting. State machines. Fuzzy logic. Rule-based Al. Basic probability. Decisions under uncertainty. Neural networks. Genetic algorithms. Practical implementation of multiple cases. Designing game Al.

Course contents (extended version)

- . Introduction to Artificial Intelligence
- Chasing and evading (in tiled and continuous environments)
 Basic chasing and evading
 Line-of-sight
- Intercepting
 Pattern movement (in tiled and continuous environments)
- 4. Flocking
 - Follow the leader
- Obstacle avoidance using feelers
 Potential function-based movement
- - Lennard-Jones potential function
 Swarm movement
- Swarm movement
 Obstacle avoidance using potential functions
 6. Basic pathfinding (in tiled and continuous environments)
 Random obstacle avoidance
 Tracing around obstacles
 Breadcrumb pathfinding
- · Waypoints
- 7. A* pathfinding
 Search area

 - Search area
 Path scoring
 Finding dead ends
 Terrain cost
 Influence mapping
- State machines
 Basic state machine model
 Finite state machines
 Nested state machines
- Nested state machines
 Hierarchical state machines
 9. Fuzzy logic
 10. Goal-Oriented Behavior.
 11. Basic probability
 Probability rules
 Conditional probability
 12. Designers under uppersiety.

- 12. Decisions under uncertaintyBayesian networks
- 13. Designing games IA

 The Design
 - Shooters

 - Shoolers Driving Real-Time Strategy
 - Sports
- Turn-Based Strategy Games
 Neural networks and genetic algorithms.
- 15. Strategy

Recommended reading

- Rabin S. (2017). Game Al Pro 3: Collected Wisdom of Game Al Professionals, 1st edition. A K Peters/CRC Press. 978-1498742580
 Haykin S. (1999). Neural Networks: A Comprehensive Foundation. New York: Prentice Hall. 978-0132733502
 Russell, S. J. , & Norvig, P. (2002). Artificial Intelligence: A Modern Approach. New York: Prentice Hall. 978-0137903955
 Funge, J. , & Millington, I. (2019). Artificial Intelligence for Games, 3rd edition, New York: CRC Press. 978-1138483972
 Bourg, D. M. , & Seemann, G. (2004). Al for Game Developers. O'Reilly Media. 978-0596005559

Teaching and learning methods

The theoretical-practical classes are performed at computer rooms (60 hours): There are exposure and explanation of concepts followed by computational experiments when appropriate. The non-presence period (98 hours): They are formed by individual or group study of selected topics accompanied by reading of literature and implementation of practical projects.

Assessment methods

- Final assessment (Regular, Student Worker) (Final, Supplementary, Special)
 Practical Work 65% (Four projects. Minimum score of 7. One of the works will be the Project between Curricular Units.)
 Final Written Exam 30% (Written test. Minimum score of 7 points.)
 Projects 5% (Project developed under the Interdisciplinary Week.)
 Exchange students (Regular, Student Worker) (Final, Supplementary, Special)
 Practical Work 95% (Four projects. Minimum score of 7. One of the works will be the Project between Curricular Units.)
 Projects 5% (Project developed under the Interdisciplinary Week.)

Language of instruction

Portuguese, with additional English support for foreign students.

ectro	OIC V	alıda	tion

João Paulo Pereira de Sousa		Barbara Costa Vilas Boas Barroso	Anabela Neves Alves de Pinho	Luisa Margarida Barata Lopes	
l	16-10-2023	13-11-2023	13-11-2023	11-12-2023	