

Course Unit Programming Languages I			Field of study	Computing Science		
Bachelor in	Game Design			School	School of Public Management, Communication and Tourism	
Academic Year	2022/2023	Year of study	1	Level	1-1	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	8309-414-1104-00-22	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC -	E · OT · O · Fieldwork; S · Seminar; E · Placement; OT · Tutorial; O · Other

Name(s) of lecturer(s)

Jose Manuel Seixas Alves, João Paulo Pereira de Sousa

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- develop algorithms that solve given problems efficiently; solve computing problems in effective ways translate algorithms into programs, using a programming language; 1. 2.
- 3. use good programming skills

Prerequisites

Before the course unit the learner is expected to be able to: 1. understand formal and mathematical notations; 2. solve simple linear equations.

Course contents

- Algorithms and troubleshooting: strategies for solving problems; the role of algorithms in problem solving; strategies for implementation of algorithms, concepts and properties of algorithms. Variables, simple and structured data types, expressions and functions, structures, flow control selection and repetition; input/output methods, subprogramming and parameters passage. Python language.

Course contents (extended version)

- General concepts of problems decomposition and algorithms

 Introduction to the concept of algorithm and structured programming;
 Specification of an algorithmic language;
 Types, operators and expressions, structures;
 Sub-programming;
 Recursivity;
 Types of structured data.

 Fundamentals of programming languages:

 General concepts, preparation and execution of a program;
 Basic Concepts in Python: identifiers, reserved words;
 Structures of flow control: if () else, for, do while, while.
 Function and structure of a program;

 - Function and structure of a program;
 - Recursivity:
- Recursivity;
 Data structures: strings, lists, tuples, etc.
 Objects Oriented Programming introduction.
 Class, Object, atribute and operations.
 Constructors.

 - Association simple, aggregation, composition and generalization.

Recommended reading

- Wentworth, P., Elkner, J., Downey, A. B. & Meyers, C. (2012). How to Think Like a Computer Scientist: Learning with Python 3. (2nd Edition).
 Downey, A. B. (2016). Think Python. Sebastopol, CA: O'Reilly Media, Inc. ISBN: 9781491939369
 Cunha, C. (2019). Programação em Python (textos de apoio). Mirandela: EsACT.
 Ramalho, L. (2015). Fluent Python: Clear, Concise, and Effective Programming. Sebastopol, CA: O'Reilly Media, Inc. ISBN: 9781491946008

Teaching and learning methods

Theoretical and practical: one part consisting of exposure to theoretical problems which arise and offer solutions followed by a part of problems and assignments to be held in class and in tutorial classes, which aims to consolidate the theoretical concepts discussed. Laboratory practice: lessons, which is shown through simulation and testing the concepts already developed.

Assessment methods

- Continuous assessment (Regular, Student Worker) (Final, Supplementary, Special)

 Intermediate Written Test 50% ((1st part of the UC content) Minimum grade: 7 points.)
 Final Written Exam 50% ((2st part of the UC content) Minimum grade: 7 points.)

 Exchange students (Regular, Student Worker) (Final, Supplementary, Special)

 Intermediate Written Test 50% ((1st part of the UC content) Minimum grade: 7 points.)
 Intermediate Written Test 50% ((2st part of the UC content) Minimum grade: 7 points.)

Language of instruction

Portuguese, with additional English support for foreign students.

	Electronic validation			
	João Paulo Pereira de Sousa, Jose Manuel Seixas Alves	Barbara Costa Vilas Boas Barroso	Elisabete da Anunciacao Paulo Morais	Luisa Margarida Barata Lopes
C	16-11-2022	18-11-2022	18-11-2022	21-11-2022