

Unidade Curricular Matemática para Jogos				Área Científica	Matemática		
Licenciatura em Design de Jogos Digitais			Escola	Escola Superior de Comunicação, Administração e Turismo de Mirandela			
Ano Letivo	2022/2023	Ano Curricular	1	Nível	1-1	Créditos ECTS	6.0
Tipo	Semestral	Semestre	1	Código	8309-414-1102-00-22		
Horas totais de trabalho 162 Horas de Contacto T - TP 60 T - Ensino Teórico; TP - Teórico Prát						E - OT	- O - ientação Tutórica; O - Outra

Nome(s) do(s) docente(s) Ines Monteiro Barbedo de Magalhaes

Resultados da aprendizagem e competências

No fim da unidade curricular o aluno deve ser capaz de:

- Ler, escrever e utilizar com fluidez a linguagem matemática
 Usar funções para descrever, modelar e resolver problemas do mundo envolvente
 Demonstrar ter adquirido conhecimentos de suporte à aprendizagem de conteúdos das áreas científicas de Ciências da Computação e Artes Visuais

Pré-requisitos

Antes da unidade curricular o aluno deve ser capaz de: Aplicar conhecimentos de Matemática do ensino secundário

Conteúdo da unidade curricular

Introdução ao Cálculo Diferencial: Funções reais de variável real; Derivada de uma função e aplicações; Função exponencial; Função logarítmica. Álgebra linear e Geometria Analítica: Matrizes; Trigonometria; Cálculo vetorial; Transformações geométricas.

Conteúdo da unidade curricular (versão detalhada)

- Introdução ao cálculo diferencial
 Funções reais de variável real. Definições. Representação gráfica e analítica.
 Estudo das características de uma função: Domínio, zeros, sinal, monotonia.
- Estudo das características de uma função: Domínio, zeros, sinal, monotonia.
 Funções afim, quadrática e racional.
 Extremos absolutos e relativos, injetividade.
 Função exponencial. Definições e propriedades. Regras operatórias.
 Função logarítmica. Definições e propriedades. Regras operatórias.
 Derivada de uma função. Definições e propriedades. Aplicações da derivada.
 Aplicações da 1ª e 2ª derivadas. Esboço do gráfico de uma função.
 Alguns tópicos de física: aceleração, massa e energia. Leis de Newton.
 2. Álgebra Linear e Geometria Analítica
 Matrizes. Definições e nomenclatura das matrizes. Operações com matrizes e suas propriedades.
 Inversa de uma matriz regular. Transposta de uma matriz.
 Determinante de uma matriz de 1ª, 2ª e 3ª ordem.
 Trigonometria. Fórmula fundamental da trigonometria.
 Relações trigonométricas; valores notáveis. Resolução de triângulos.
 Cálculo vetorial. Representação de pontos e vetores num referencial ortonormado; norma de um vetor.
 Operações com vetores: adição, produto por um escalar, normalização e forma polar.
 Retas e planos e círculos e esferas. Posições relativas. Produto interno e externo.
 Polígonos e poliedros. Algumas propriedades
 Transformações geometricas. Rotação, translação, reflexão, mudança de escala e projeção.

Bibliografia recomendada

- 1. Dunn, F. & Parberry, I. (2011). 3D Math Primer for Graphics and Game Development. (2nd ed.). A K Peters/CRC Press [ISBN-13: 978-1568817231] 2. Flynt, J. P. & Kodicek, D. (2012) Mathematics and Physics for Programmers (2nd ed.) CENGAGE Learning [ISBN: 1435457331] 3. Stahler, W. (2006). Fundamentals of Math and Physics for Game Programmers. Prentice Hall [ISBN: 0131687425] 4. Trembley, C. (2004). Mathematics for game developers. Thomson Course Technology / Premier Press [ISBN: 159200038X] 5. Barbedo, I. (2018) Apontamentos de Matemática para Jogos, EsACT

Métodos de ensino e de aprendizagem

HORAS PRESENCIAIS E NÃO PRESENCIAIS As aulas serão orientadas no sentido de: colmatar dificuldades; partilhar sucessos e dificuldades; explanar conteúdos e exemplos por meios audiovisuais; explorar exemplos ligados a casos práticos; simular exemplos em computador, discutir propostas de trabalho. O estudante deverá trabalhar as unidades previamente, devendo ser incentivado o trabalho em equipa.

Alternativas de avaliação

- Avaliação Distribuída (estudantes em mobilidade) (Ordinário, Trabalhador) (Final, Recurso, Especial)
 Trabalhos Práticos 40% (3 em 4 propostas)
 Temas de Desenvolvimento 10% (Semana Interdisciplinar)
 Exame Final Escrito 50% (Todos os conteúdos leccionados (nota mínima de 7 em 20 valores))

Língua em que é ministrada

Português, com apoio em inglês para alunos estrangeiros

Validação Eletrónica Ines Monteiro Barbedo de Magalhaes Barbara Costa Vilas Boas Barroso Elisabete da Anunciacao Paulo Morais Luisa Margarida Barata Lopes 05-10-2022 24-10-2022 24-10-2022 24-10-2022