

Course Unit	Course Unit Operational Research			Field of study	Management	
Bachelor in	Management			School	School of Technology and Management	
Academic Year	2020/2021	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9991-708-2204-00-20	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC -	Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Carla Alexandra Soares Geraldes, Maria Clara Rodrigues Bento Vaz Fernandes, Maria Prudência Gonçalves Martins

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to: 1. Formulate linear programming problems 2. Know and apply the simplex algorithm 3. Know and apply the duality theory 4. Perform postoptimality and sensitivity analysis 5. Know and apply the Dantzig algorithm to transport problems 6. Know and apply the Hungarian and the bottleneck assignment problem algorithms to assignment problems 7. Apply CPM and PERT methods to project planning

Prerequisites

Before the course unit the learner is expected to be able to: 1. Perform elementary operations of matrix algebra 2. Solve systems of linear equations

Course contents

Introduction to Operational Research. Linear programming models. Duality theory. Postoptimality and sensitivity analysis. The transportation and assignment problems. Project management.

Course contents (extended version)

- Introduction to Operational Research

 The origins of Operational Research
 Methodology and application domains

 Linear programming models

 Mathematical formulation of linear programming models
 Graphical solution method
 Simplex method

 Simplex method
 - Economic interpretation of simplex

This document is valid only if stamped in all pages

- 3. Duality theory The essence of duality theory
- The essence of duality theory
 Primal-dual relationships
 Economic interpretation of duality
 The dual simplex method
 Postoptimality and sensitivity analysis
 Changes in the objective function coefficients (cj)
 Changes in the right-hand side (bi)
 Introduction of new variables
 Introduction of new constraints
 Allowable range for the objective function coefficient
- Allowable range for the objective function coefficients
 Allowable range for the right-hand sides
 5. The transportation and assignment problems
 The transportation problem
- The transportation problem
 The Dantzig algorithm
 The assignment problem
 The Hungarian method
 Bottleneck assigment problem
 Critical Path Method (CPM)
 Critical path detormination

- Critical path determination
 Programme Evaluation and Review Technique (PERT)

Recommended reading

- Geraldes, C. A. S., & Cruz, C. (2018). Operations Research Lectures Notes. ESTiG-IPB.
 Guerreiro, J., Magalhães, A., & Ramalhete, M. (1995). Programação Linear, Vol. I e II (4ª edição). McGraw-Hill.
 Hillier, F. S., & Lieberman, G. J. (2010). Introduction to Operations Research (9th edition). McGraw-Hill.
 Pina Marques, M. (2010). Textos de Apoio de Investigação Operacional.
 Valadares Tavares, L., Hall Themido, I., Carvalho Oliveira, R., & Nunes Correia, F. (1996). Investigação Operacional. McGraw-Hill.

Teaching and learning methods

Contents will be covered with student attendance, in theoretical-practical classes, as well as the analysis and solution of exercises. Non-contact hours should be spent reviewing the lectured contents and solving practical exercises from the worksheets. Tutorial sessions might be held in non-contact hours, if necessary, individually or in groups.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 100%
- 2. Alternative 2 (Regular, Student Worker) (Final)

Assessment methods Intermediate Written Test - 50% (The intermediate exam may be conditioned to a presencial exam.) Intermediate Written Test - 50% (If the mark in the written exam is higher than 16 the lecturer can take an oral test to the student.)

Language of instruction]
Portuguese		
Electronic validation		

Carla Alexandra Soares Geraldes, Maria Clara Rodrigues Bento Vaz Fernandes, Maria Prudência Gonçalves Martins	António Jorge da Silva Trindade Duarte	António Borges Fernandes	Paulo Alexandre Vara Alves	
27-02-2021	06-03-2021	08-03-2021	21-03-2021	J