

Course Unit	rse Unit Hydro and Wind Technology			Field of study	Energy	
Bachelor in	Renewable Energy Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9910-743-2204-00-23	
Workload (hours)	162	Contact hours			C 10 S 10 solving, project or laboratory; TC -	E · OT · O ·

Name(s) of lecturer(s)

Jorge Henrique de Carvalho Santos, Luís Manuel Frolen Ribeiro, Tomás de Aquino Freitas Rosa Figueiredo

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
- Master the main hydro and wind technologies.
 Apply hydro and wind resource evaluation methods.
 Dimension mechanical energy conversion systems.

Prerequisites

- Before the course unit the learner is expected to be able to: 1. understand differential and integral calculus. 2. understand Newtonian physics. 3. understand fluid flow dynamics.

Course contents

Wind and Hydro-power technologies

Course contents (extended version)

- 1. Hydro-power Available technologies;
 - classification;

This document is valid only if stamped in all pages.

- classification;
 hydric regime and resource assessment;
 basic project criteria;
 main type of turbines and application;
 converted energy.
 Wind technology
 Origin, general circulation and local effects;
 wind regime characterization;
 wind resource potential;
 principles of convertion;

 - principles of convertion;
 wind turbine aerodynamics;
 main features of a wind turbine;
 - energy converted by a wind turbine.

Recommended reading

- "Renewable Energy, A Power for a Sustainable Future", Boyle, G. Oxford University Press, 2004.
 "Wind Energy Handbook", T. Burton, D. Sharpe, N. Jenkins e E. Bossanyi, John Willey & Sons, 2001.
 "Wind Power Plants", R. Gash, J. Twele. James & James, 2002.
 "Winicentrales Hidroeléctricas", Manuais de Energias Renovaveis do IDAE
 "Uma Introdução às Energias Renováveis", R. Castro. IST Press, Lisboa, 2011.

Teaching and learning methods

Classes bases on problem solving methodology followed by critical analysis of the results. Seminars and field trips.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Practical Work 75% (Assessment of student's performance during practicals (involvement in exercises and lab work))
 Intermediate Written Test 25%

 Alternative 2 (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam 100%

Language of instruction

- 1. Portuguese, with additional English support for foreign students.
- 2. English 3. Spanish

Electronic validation			
Jorge Henrique de Carvalho Santos, Luís Manuel Frolen Ribeiro, Tomás de Aquino Freitas Rosa Figueiredo	João Eduardo Pinto Castro Ribeiro	Ana Maria Alves Queiroz da Silva	José Carlos Rufino Amaro
20-02-2024	27-02-2024	11-03-2024	16-03-2024