

Course Unit	Materials Science			Field of study	Physics/Chemistry	
Bachelor in	Renewable Energy Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9910-743-1202-00-23	
Workload (hours)	162	Contact hours	T 30 TP 30 T - Lectures; TP - Lectures a	30 PL - T	C - S - solving, project or laboratory; TC	Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

João da Rocha e Silva

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Acquiring knowledge and understanding the properties of materials used in engineering.
 Relate structure and properties of materials used in engineering.
 Acquiring knowledge on the latest materials used in engineering and its applications.
 Relate the materials and properties in order to propose new materials and new applications.

Prerequisites

Before the course unit the learner is expected to be able to: Not Applicable

Course contents

Introduction to materials science and engineering. Crystalline structure and geometry of crystals. Mechanical properties of metallic materials. Electrical properties, optical properties and superconducting materials. Metals and metal alloys Polymeric materials Magnetic materials Ceramic materials and composite materials. Economic, social and environmental considerations in materials engineering.

Course contents (extended version)

- Introduction to materials science and engineering.

 Material classes. Future trends in the use of materials.

 Crystal structure and crystal geometry

 Crystal structure and crystal geometry
 Solidification, crystalline defects and diffusion in solids. crystalline defects
 Industrial applications of diffusion processes. Effect of temperature on diffusion in solids
 Displacement theory and hardening mechanisms. Displacement and plastic deformation

 Mechanical properties of metallic materials

 Processing of metals and alloys. Strain stress in metallic materials
 Tensile test and rated voltage diagram. Nominal extension. Hardness and hardness test
 Plastic deformation of single crystals Plastic deformation of polycrystalline materials
 Recovery and recrystallization
 Metal fracture. Metal fatigue. Creep and rupture under stress of metals
 Electrical properties, optical properties and superconducting materials
 Electrical conduction in metals. Electric conduction energy bands model
 Light and the electromagnetic spectrum. refraction of light
 Absorption, transmission and reflection. Stimulated emission of radiation and lasers. Optical fibers
 Superconducting materials
- Absorption, transmission and renection. Summare emission of realization en-Superconducting materials
 Metals and Metal Alloys
 Iron-Carbon Alloys, Steels. Aluminum alloys. Copper alloys. stainless steels
 Selection of metal alloys for engineering applications
- 6. Polymeric materials
- 6. Polymeric materials

 Structure of polymers. Polymerization reactions. Industrial polymerization processes
 Characteristics, applications and processing of polymers. plastics processing
 Behavior of polymers in solution. Thermosetting plastics. elastomers
 Deformation of plastics. Selection of plastic materials

 7. Magnetic materials

 Magnetic fields and magnetic quantities
 Types of magnetism
 Effect of temperature on ferromagnetism
 Ferromagnetic domains
 Types of energy that determine the structure of magnetic domains

- Types of energy that determine the structure of magnetic domains Magnetization and demagnetization of a ferromagnetic metal
- Soft magnetic materials Hard magnetic materials
- Ferrites
 8. Ceramic materials and composite materials
- Structure and properties of ceramics. Simple ceramic structures.
 Ceramic applications and processing. Mechanical properties of ceramics. Glasses
 Economic, social and environmental considerations in materials engineering

Recommended reading

- Smith, W. F., & Hashemi, J. (2013), Fundamentos de Engenharia e Ciência dos Materiais. Mc Graw Hill
 William D. Callister (2016), Ciência e Engenharia de Materiais Uma Introdução, LTC Editora
 ASM International Handbook Committee (2018), Engineered materials handbook
 RWK Honeycombe (2006), Aços micro estrutura e propriedades, Fundação C. Gulbenkian
 De Lucas Filipe Martins da Silva, Fernando Jorge Lino Alves e António Torres Marques (2014), Materiais de Construção, Engebook

Teaching and learning methods

Theoretical and theoretical-practical classes. Problem solving and practical cases. The interrogative method is used, questioning the students so that they can discover the important points. Laboratory work of analysis of metallic and fiber-reinforced plastic samples and reports. In asynchronous environment, it is proposed to solve problems

This

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Practical Work 10%
 Intermediate Written Test 60% (Minimum score 7 points)
 Experimental Work 10%
 Laboratory Work 10%
 Case Studies 10%

 Alternative 2 (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation			
João da Rocha e Silva	João Eduardo Pinto Castro Ribeiro	Ana Maria Alves Queiroz da Silva	José Carlos Rufino Amaro
16-02-2024	19-02-2024	03-03-2024	09-03-2024