

Course Unit	Biofluid Mechanics			Field of study	Physics	
Bachelor in Biomedical Technology			School	School of Technology and Management		
Academic Year	2022/2023	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9600-752-3202-00-22	
Workload (hours)	162	Contact hours	T - TP TP	60 PL - T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC -	E · OT · O · Fieldwork; S · Seminar; E · Placement; OT · Tutorial; O · Other

Name(s) of lecturer(s)

Sérgio Manuel de Sousa Rosa

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to.
 Show a good understanding of the basic concepts of fluid mechanics (static and dynamic).
 Apply the knowledge of fluid mechanics to the circulation of blood in the heart, lungs, and kidneys.
 Recognize the rheological properties of different fluids, namely biofluids in their natural state and in various pathological situations.
 Demonstrate knowledge related the development of cardiovascular diseases and their treatments.

Prerequisites

Not applicable

Course contents

- Fluid hydrostatic
- 2 Fluid Dynamics 3 Rheology
- 3 Rheology 4 Blood flow
- 5 Diseases and devices

Course contents (extended version)

- 1. Fluid hydrostatic
 - Physics fluid properties
 Hydrostatic equation
 - Pressure measurements
- 2. Fluid Dynamics (1)

document is valid only if stamped in all pages.

This

- Type of flows
 Fundamental equations
 Fluid Dynamics (2)
- Energy losses
- Viscous flow
- Viscous flow
 Pipe networks
 4. Rheology
 -Non-Newtonian fluid
 Viscoelasticity
 Rheology of blood
 Other biofluids
 5 Blood flow
- 5. Blood flow
- Human circulation
- Pulmonary system and gas exchange at lung level
 Diseases and devices
- Atherosclerosis
- Angioplasty
 Cardiovascular implants

Recommended reading

- F.M. White, "Fluid Mechanics", McGraw-Hill, 8th Ed., 2016
 A. Ostadfar, "Biofluid Mechanics", Academic Press, 2016
 K.B. Chandran, S.E. Rittgers, A.P. Yogonathan, "Biofluid Mechanics", Taylor & Francis Group, 2nd Ed., 2012
 4 K. Walter, "An introduction to rheology", Elsevier Science, 1st Ed., 1989

Teaching and learning methods

Theoretical lessons: Theoretical presentation of fundamental concepts followed by practical applications. Practical lessons: Resolution of exercises. Laboratory classes: Rheology lessons with experiments on the rheometer.

Assessment methods

- Intermediate (Regular, Student Worker) (Final)

 Intermediate Written Test 35% (1st Intermediate written test)
 Intermediate Written Test 35% (2nd Intermediate Written test)
 Laboratory Work 30% (Two laboratorial works)

 Final Written Exam (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam 100% (Final written Exam)

Language of instruction

1. Portuguese 2. English

Electronic validation								
Sérgio Manuel de Sousa Rosa	Luís Manuel Ribeiro Mesquita	Joana Andrea Soares Amaral	José Carlos Rufino Amaro					
28-03-2023	28-03-2023	28-03-2023	28-03-2023					