

Course Unit	Biomedical Signal Processing			Field of study	Instrumentation and Biomedical Signals			
Bachelor in	Biomedical Technology			School	School of Technology and Management			
Academic Year	2023/2024	Year of study	3	Level	1-3	ECTS credits	6.0	
Туре	Semestral	Semester	1	Code	9600-752-3103-00-23			
Workload (hours)	162	Contact hours			C - S -	E - OT	- O - oment; OT - Tutorial; O - Other	
Name(s) of lecturer(s) Fernando Jorge Coutinho Monteiro, Felipe Lage Teixeira, Rui Vitor Pires Fernandes								

Learning outcomes and competences

- 2. perform basic operations with signals;
 3. create and represent, under Matlab environment, signals in original and transformed domains using the FFT;
 4. sample a continuous time signal respecting the Nyquist theorem;
 5. interpret the spectral representation of signals;
 6. interpret and represent the transfer function / frequency response of a system;
 7. project and implement digital filters;
 8. recognize the characteristics of typical biologic signals.

Prerequisites

Before the course unit the learner is expected to be able to:
1. have knowledge about mathematical summation;
2. have knowledge about integral calculus;

- 3. work with complex numbers and complex functions

Course contents

Signals. Signal representation in time and frequency domains. Relation between those representations. Operations with signals. Discrete-time systems; discrete convolution. Fourier transform of discrete-time signals. Sampling. The z transform. Discrete Fourier transform (DFT). Project and implementation of FIR and IIR digital filters. Characteristics of biologic signals such as EEG, ECG, EMG, EOG and voice.

Course contents (extended version)

- 1. Introduction to Digital Signal Processing
- Signals
 Continuous and discrete-time signals

 - Basic operations with signals
 Properties of the signals: even signals; odd signals; periodicity
 Elementary signals: exponential; sinusoidal; complex exponential; step function; impulse function
- 3. Discrete Systems

 - Model of a system
 Properties of systems
 - Impulse response
 - Discrete convolution

 - Frequency response of a system
 Fourier transform of a discrete-time signal
 Properties of the Fourier transform
 Differences equation to the transfer function
- Sampling of continuous-time signals
 Introduction

 - introduction
 Nyquist sampling theorem
 Aliasing
 Reconstruction of a signal from its samples
 Interpolation
- Decimation
 5. The z-Transform
- The z-1 ransform
 Definition
 Region of convergence
 Relation with Fourier transform
 Z-transform properties
 Inversion of z-transform
 The Discrete Fourier Transform DFT
 Definition

 - Properties of DFT

 - Relation with z-transform
 Linear convolution using the discrete Fourier transform
 Fast Fourier transform algorithms FFT
 Inverse discrete Fourier transform
- 7. Digital Filters
 Filters characteristics specification
 - FIR digital filters project

 - Frequency transformations
 Digital filter implementation under Matlab
- Digital filter implementation direct matters.
 Biological Signals
 Acquisition process of voice EEG, EKG and EMG signals
 Characteristics of the voice signal: spectrogram, F0, Jitter and Shimmer
 Characteristics of the EEG signal: frequency bands alpha, theta, beta, delta and gamma
 Characterization of events in a cycle of ECG signal

Recommended reading

1. A. V. Oppenheim, R. W. Schafer e J. R. Buck, "Discrete-Time Signal Processing", 2nd edition, Prentice-Hall, 1999.

This document is valid only if stamped in all pages.

Recommended reading

- Paulo Sérgio Diniz, Eduardo Silva e Sérgio Netto, "Processamento Digital de Sinais Projecto e Análise de Sistemas", Bookman Editora, 2002.
 Ortigueira, Manuel Duarte, "Processamento Digital de Sinais", Fundação Calouste Gulbenkian, 2005.
 Metin Akay, 'Biomedical Signal Processing', Academic Press, 1994.
 J. P. Teixeira, Caderno de Exercícios para PSB + Conjunto de transparências para PSB, 2020.

Teaching and learning methods

Sessions for presentation of the course contents, accompanied by practical exercises in "paper and pencil" and in Matlab. The non-presence 4 weekly hours must be used for study, for realization of a set of exercises and for the development of 2 short-projects.

Assessment methods

- Unique (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 75%
 Projects 25% (2 short projects.)

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation

Fernando Jorge Coutinho Monteiro	José Luís Sousa de Magalhaes Lima	Joana Andrea Soares Amaral	José Carlos Rufino Amaro
10-10-2023	11-10-2023	31-10-2023	04-11-2023