

Unidade Curricular Biomateriais			Área Científica	Biomateriais e Biomecânica		
Licenciatura em Tecnologia Biomédica			Escola	Escola Superior de Tecnologia e de Gestão de Bragança		
Ano Letivo	2023/2024	Ano Curricular	2	Nível	1-2	Créditos ECTS 6.0
Tipo	Semestral	Semestre	2	Código	9600-752-2201-00-23	
Horas totais de traba	alho 162	Horas de Contacto	1 00 IF			E - OT - O - O; S - Seminário; E - Estágio; OT - Orientação Tutórica; O - Outra
Nome(s) do(s) docer	nte(s) João da Roc	ha e Silva				

Resultados da aprendizagem e competências

No fim da unidade curricular o aluno deve ser capaz de:

- Conhecer e compreender as propriedades dos vários materiais usados em engenharia biomédica Relacionar propriedades e estrutura dos materiais

- Conhecer as mais recentes aplicações de biomateriais em engenharia biomédica
 Relacionar os materiais e as suas propriedades de forma a propor novas aplicações e novos materiais na engenharia biomédica

Pré-requisitos

Antes da unidade curricular o aluno deve ser capaz de: Não Aplicável

Conteúdo da unidade curricular

Introdução à ciência e engenharia dos materiais. Mecanismos de modificação de propriedades de materiais. Propriedades mecânicas e elétricas dos materiais. Corrosão e degradação do material. Ligas metálicas. Materiais poliméricos, cerâmicos, magnéticos, compósitos, supercondutores. Superfícies técnicas. Bioimplantes. Seleção de biomateriais e considerações de projeto. Considerações económicas, sociais e ambientais na engenharia dos materiais.

Conteúdo da unidade curricular (versão detalhada)

- Introdução à ciência e engenharia dos materiais
 Materiais e engenharia. Classes de materiais.
 Propriedades mecânicas dos materiais metálicos.
 Processamento de metais e ligas.
 Tensão de deformação. Ensaio de tração e diagrama tensão nominal extensão nominal.
 Dureza e ensaio de dureza.
 Procreação plástica de manacristais metálicos. Deformação plástica de materiais policrist.

 - Deformação plástica de monocristais metálicos. Deformação plástica de materiais policristalinos.
 Endurecimento de metais por solução sólida.
 Recuperação e recristalização de metais deformados plasticamente.
 Fratura de metais. Fadiga de metais. Fluência e rutura sob tensão de metais.
- Fratura de metais. Fadiga de metais. Fidericia e rutura sob terisão de metais.
 Diagramas de fase.
 Diagramas de fase de substâncias puras. Regra das fases de Gibbs. Sistemas binários isomorfos.
 Solidificação de não equilíbrio de ligas metálicas. Regra da alavanca.
 Sistemas binários eutéticos, peritéticos e monotéticos. Reações invariantes.
 Diagramas de fase com fases e compostos intermédios. Diagramas de fase ternários.
 4. Corrosão e degradação do material / Biomateriais
 Séries galvânicas. Velocidade (cinética) da corrosão. Formas de corrosão.
 Fatores que controlam a corrosão. Formas de corrosão. Oxidação de metais.
 Controlo da corrosão. Corrosão de biocerâmicos. Degradação de biopolímeros.
 5. Ligas metálicas
- Controlo da corrosao. Corrosao de biocerámicos. Degradação do biopolíficios.
 Ligas metálicas
 Ligas Ferro-Carbono, aços. Ligas de alumínio e de cobre. Aços inoxidáveis em medicina. Superligas.
 Ligas de magnésio, titânio e níquel. Metais nobres.
 Seleção de ligas metálicas para aplicações em bioengenharia.
 Materiais poliméricos.
 Deformação e reforço de plásticos. Fluência e fratura. Seleção de biomateriais.
 Materiais carâmicos

- 7. Materiais cerâmicos.
 Estrutura e propriedades dos cerâmicos. Aplicações e processamento de biocerâmicos.
 Processamento de biocerâmicos. Vidros.

- Materiais compósitos.
 Fibras para reforço.
 Plásticos reforçados por fibras. Estruturas tipo sanduíche.
 Compósitos de matriz metálica e compósitos de matriz cerâmica.
 Superficies técnicas.
- Metrologia das superfícies. Revestimentos e tratamentos de superfície
 Bioimplantes.
- - Bioimplantes.

 Biomateriais naturais e artificiais. Constituição e morfologia de tecidos.

 Classes de materiais usados em implantes.

 Análise da biocompatibilidade e funcionalidade. Teste de biomateriais.

 Reações orgânicas aos biomateriais. Fadiga e degradação de biomateriais. Aplicações.
 - Seleção de biomateriais e considerações de projeto.

Bibliografia recomendada

- Buddy D. Ratner, Allan Hoffman, Frederick Schoen, Jack Lemons, Biomaterials Science An Introduction to Materials in Medicine, Academic Press, 2013
 Lucas Silva, Jorge Lino, Torres Marques, Materiais de Construção, Engebook, 2013
 William F SMITH, Principles of Materials Science and Engineering, McGraw-Hill, 1996
 Rodrigo Lambert Oréfice, Biomateriais: Fundamentos e Aplicações, Rio de Janeiro, Cultura Médica, 2006
 John Enderle, Susan Blanchard, Joseph Bronzino, Introduction to Biomedical Engineering, Academic Press, 2015

Métodos de ensino e de aprendizagem

São utilizadas aulas teóricas com uma componente expositiva e uma componente prática de resolução de problemas e análise de casos práticos. É utilizado o método interrogativo, questionando os alunos para que os próprios descubram os pontos considerados importantes. Trabalhos laboratoriais e elaboração de relatório. Em ambiente não presencial resolução de problemas e realização trabalhos.

Alternativas de avaliação

- Alunos com avaliação distribuída (Ordinário, Trabalhador) (Final)
 Relatório e Guiões 10%
 Trabalhos Práticos 10%
- Trabalhos Laboratoriais 10%
 Trabalhos Laboratoriais 10%
 Prova Intercalar Escrita 60% (Duas provas em ambiente virtual (se possível). Peso de 50% cada. Nota mínima de 7/20)
 Discussão de Trabalhos 10% (Neste ponto será valorizada toda a participação nas aulas.)
 Alunos sem avaliação distribuída (Ordinário, Trabalhador) (Recurso, Especial)
 Exame Final Escrito 60% (Prova escrita sem consulta de apontamentos.)
 Relatório e Guiões 40%

Língua em que é ministrada

Português, com apoio em inglês para alunos estrangeiros

\/ali	dação	Eletrónica	
vali	uacau	Lietionica	

João da Rocha e Silva	João Eduardo Pinto Castro Ribeiro	Joana Andrea Soares Amaral	José Carlos Rufino Amaro
16-02-2024	19-02-2024	15-03-2024	24-03-2024