

Course Unit	Biostatistics			Field of study	Mathematics		
Bachelor in	Biomedical Technology			School	School of Technology and Management		
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits 6.0	
Туре	Semestral	Semester	1	Code	9600-752-2101-00-23		
Workload (hours)	162	Contact hours	T 30 TP	- PL 30 T	c - s -	E - OT - O -	
T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other							
N () () () () () () () () () () () () ()							

Name(s) of lecturer(s) António Jorge da Silva Trindade Duarte

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:

 1. Understand the probability concept and its axioms and compute simple probability using the basic probability and combinatorics laws;

 2. Understand the basic concepts related to random variables and perform simple calculations based on them;

 3. Know and to manipulate, at a basic level, the most common random variables and use them to model simple situations;

 4. Apply and to interpret the most common ways of representing and synthesize the information in a dataset;

 5. Compute point and interval estimates for the most common population parameters;

 6. Understand and to apply the hypothesis test methodology on the most common population parameters.

Prerequisites

Before the course unit the learner is expected to be able to:

- Manipulate basic mathematical concepts
 Use an electronic spreadsheet

Course contents

Introduction. Basic Probability Theory. Descriptive Statistics. Random Variables and Probability Distributions. Joint Probability Distributions. Characterization of some Discrete Distributions. Characterization of some Continuous Distributions. Random Sampling and Sampling Distributions. Point Estimation. Interval Estimation. Hypothesis Tests.

Course contents (extended version)

- 1. Introduction

 - The statistical object
 Descriptive statistics and statistical inference
 Populations and samples
- Descriptive Statistics
 Data classification

 - Qualitative and quantitative data
 Univariate samples characterization
 Location statistics (average, median and mode) and dispersion (variance)
 Skew and Kurtosis coefficients

 - Bivariate samples characterization
 Calculation of a linear relation coefficients using least-squares line
- Correlation and determination coefficients using least correlation and determination coefficients
 Probability Theory
 Random experiments, sample spaces and events
 Combinatorial analysis
 - The probability concept
 Conditional probability
 Independent events
- Bayes theorem

 4. Random Variables and Probability Distributions
 Definition of random variable
- Definition of random variable
 Discrete variables: probability function and cumulative probability function
 Continuous variables: probability density function and cumulative density function
 Distribution parameters
 Linear and non-linear combinations of random variables
 Joint Probability Distributions
 Definition of joint distributions
 Marginal distributions
 Conditional distributions
- - Independence
 Covariance and correlation
- Covariance and contention
 Variable combinations
 Expected value and variance of linear and non linear variable combinations
 6. Characterization of some Discrete Distributions
 Binomial distribution

 Nearthy Disposed distribution
- Negative Binomial distribution
 Hypergeometric distribution
 Relation between the Binomial and the Hypergeometric distributions
 Poisson distribution

 Relation between the Binomial and the Hypergeometric distributions
- Relation between the Poisson and the Binomial and Hypergeometric distributions
 Characterization of Some Continuous Distributions
- - Uniform distribution
 Exponential distribution
 Relations between the Poisson and Exponential distributions
 Normal distribution

 - Normal distribution
 Standard Normal distribution
 Linear combination of independent Normal variables
 Relations between the Normal and Binomial distributions
 Chi-squared, Student's t and F distributions
- Random Sampling and Sampling Distributions
 Distribution of the sample mean

 - Expected value and variance for the sample mean Sample mean distribution shape for Normal populations
 - Central limit theorem

Course contents (extended version)

- Implications on sampling distributions
 Random sample generations using the Monte Carlo method
 Generation of random U(0, 1) samples
 Generation of random samples for discrete and for continuous populations
- Point Estimation
 Estimators and estimates
 - Desirable estimator properties: bias, efficiency and consistency
 Estimation methods: maximum likelihood and least squares
- Estimator selection
 Interval Estimation

 - Interval Estimation

 Confidence interval concept

 Confidence interval specification

 Confidence intervals for the continuous populations mean

 Confidence intervals for the Binomial proportion: small and large samples

 Confidence intervals for a Normal population variance

 Confidence intervals for the mean difference between two continuous populations

 Confidence intervals for the proportion difference with large samples

 Confidence intervals for the variance ratio of Normal populations

 Sample size determination

 - Sample size determination
- Sample size determination

 11. Hypothesis Tests
 Basic hypothesis test procedure
 Hypothesis definition
 Test statistic characterization
 Decision rule definition
 Type I error and significance
 Calculation of test statistics and decision making
 P-value

 Type I error and statistical pages.

 - Type II error and statistical power
 Relations between hypothesis tests and confidence intervals
 Reference to the most common tests

Recommended reading

- Rui Guimarães, Sarsfield Cabral Estatística Verlag Dashöfer Portugal, 2010 (texto principal)
 António Carvalho Pedrosa, Sílvio Marques Gama Introdução Computacional à Probabilidade e Estatística Porto Editora, 2007
 Diez D. , Cetinkaya-Rundel, M. , Barr C. D. OpenIntro Statistics www. openintro. org, Fourth Ed. , 2019

Teaching and learning methods

Contents will be presented in the classroom. In theoretical classes, contents are presented and illustrated with the help of simple examples. In practical classes, application exercises are analyzed and solved. Non-contact hours should be spent reviewing the lectured contents and solving practical exercises from the exercises book.

Assessment methods

- Alternative I (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 100%
 Alternative II (Regular, Student Worker) (Final)
 Intermediate Written Test 25%
 Final Written Exam 25%
 Practical Work 40%
 Portfolio 10% (Work done in classroom)

Language of instruction

Portuguese

Electronic validation

António Jorge da Silva Trindade Duarte	Carla Alexandra Soares Geraldes	Joana Andrea Soares Amaral	José Carlos Rufino Amaro
04-10-2023	05-10-2023	31-10-2023	04-11-2023