

| Course Unit      | Renewable Energies                              |               |   | Field of study | Energy                                          |                                             |                                         |
|------------------|-------------------------------------------------|---------------|---|----------------|-------------------------------------------------|---------------------------------------------|-----------------------------------------|
| Master in        | Industrial Engineering - Mechanical Engineering |               |   | School         | School of Technology and Management             |                                             |                                         |
| Academic Year    | 2022/2023                                       | Year of study | 1 | Level          | 2-1                                             | ECTS credits                                | 6.0                                     |
| Туре             | Semestral                                       | Semester      | 1 | Code           | 9572-356-1101-00-22                             |                                             |                                         |
| Workload (hours) | 162                                             | Contact hours |   | - PL 30 T      | C - S -<br>solving, project or laboratory; TC - | E - OT<br>Fieldwork; S - Seminar; E - Place | - O -<br>ement; OT - Tutorial; O - Othe |

Name(s) of lecturer(s)

Luís Manuel Frolen Ribeiro

- Learning outcomes and competences
- At the end of the course unit the learner is expected to be able to: 1. Understand the working principles of the different components and technologies of renewable sources and assessment methods of endogenous resources. 2. Identify economical and environmental value of renewable sources.

- Understand the national plan for renewable energies
   Characterize the power systems and to know the structure of electrical grids, in particular the Portuguese case.
   Understand the fundamentals concerning the integration of the technologies commonly used to generate electricity from renewable sources, mainly hydropower, photovoltaic and wind systems. 5

## Prerequisites

- Before the course unit the learner is expected to be able to:
- Notions of classical thermodynamics.
   Analyse linear circuits in both direct and alternate current

## Course contents

Energy and Environment. Renewable energy sources. Wind Energy. Hydro power. Solar thermal. Portuguese plan for renewable energies for electricity generation. Characterization of power systems. Organization and management of power systems. Solar photovoltaic, wind power and small hydropower energy systems.

## Course contents (extended version)

1. Introduction

This document is valid only if stamped in all pages

- Energy, definition and concepts Energy and progress; energy intensity Dominant cultural energy; change in energy paradigm; energy policy vectors Dominant cultural energy; change in energy paradigm; energy p
  Energy and Environment
  Traditional fuels
  Environmental problems associated with traditional fuels
  Energy dilemma in modern societies
  Energy saving measures
  Renewable energy sources
  Renewable/alternative; concept of "renewable"
  Origin and renewable types - technologies and maturity degree
  Future global energy positioning
  Wind Energy

- Future global energy positioning
   Wind Energy
   Origin, general circulation and local effects
   Wind regime characterisation, wind potential
   Conversion principles, rotor aerodynamics
   Main characteristics of a wind turbine
   Energy converted by a wind turbine; isolated and integrated set-ups
   5 bydro power

- Energy converted by a wind turbine, isola
   Hydro power
   Available technologies
   Set-up classification
   Hydric regime and resource assessment
  - Basic project criteria Main hydro turbine types and application; energy converted by an hydropower system
- 6. Solar thermal

  - Geometry and solar resources
     Radiation in inclined surfaces
     Thermal solar panels with low or no concentration types and applications
     Thermal solar panels for heating water
     Thermal solar panels for environmental heating, cooling and industrial processes
- Thermal solar panels for environmental heating, cooling and industrial processes
   Calculation methods f-chart, fi-chart and fi, f-chart
   National plan for renewable energies concerning power generation
   European policies for energy
   Portuguese strategy for energy
   Remuneration of electricity from renewable energy sources
   Regulation issues concerning power generation from renewable energy sources
   Revision of the fundamental concepts of power systems
   Power and energy
   Load diagram

- Power and energy
  Load diagram
  Power in electrical power systems: Active, reactive and complex power
  Three-phase systems: Voltage, current and power in symmetrical systems
  Load characterization: Typology and elasticity
  Power systems characterization
  The power system: Structure, components, requirements and single-line diagram
  Electrical grids: Purpose, nominal voltage and topology
  The Portuguese electrical network
  10. Organization and management of power systems
  Characteristics of electricity
  Organizational schemes of electrical sector
  Regulation of the electrical sector
  Iberian electricity market
- Iberian electricity market
   Frequency regulation, voltage support, power reserves and service restoration
   Service quality on power systems
   I. Photovoltaic systems
   Technical and economical issues

## Course contents (extended version)

- The photovoltaic effect
  Mathematical model of the solar cell
  Applications of photovoltaic systems
  Main criteria for sizing photovoltaic systems
  Main components of photovoltaic systems
  Estimation of the generated power
  Wind power plants
- 12. Wind power plants Generators

  - Main characteristics and working principles of the generators
     Interconnection to Electrical grid

## Recommended reading

- "Renewable Energy Power for a Sustainable Future", Boyle, G., Oxford University Press, 2004
   "Energias Renováveis, a Opção Inadiável", Manuel Collares-Pereira; SPES Sociedade Portuguesa de Energia Solar, 1998.
   "Redes de Energia Eléctrica, uma Análise Sistémica", José Pedro Sucena Paiva, IST Press, 2005
   "Photovoltaics for Professionals: Solar Electric Systems Marketing, Design and Installation", Falk Antony, Christian Dürschner, Karl-Heinz Remmers, Earthscan Publications Ltd., June 2007
   "Embedded Generation", N. Jenkins, R. Allan, P. Crossley, D. Kirchen, G. Strbac, IEE Power and Energy Series, 31, London, 2000

#### Teaching and learning methods

Lectures of explanation of concepts and methodologies for the understanding the course contents. Practices: lectures will rely on Project Based Learning methodology with a common project for different groups in the class. Each group will make regular presentations to the classroom.

#### Assessment methods

Alternative 1 - (Regular, Student Worker) (Final, Supplementary, Special)
 Development Topics - 50% (Group work on specific renewable energy technology. Assignment 1)
 Development Topics - 50% (Individual assignments over the classroom material. Assignment 2)

# Language of instruction

Portuguese, with additional English support for foreign students.

| Electronic validation      |                                   |                                      |                            |  |
|----------------------------|-----------------------------------|--------------------------------------|----------------------------|--|
| Luís Manuel Frolen Ribeiro | João Eduardo Pinto Castro Ribeiro | José Alexandre de Carvalho Gonçalves | Paulo Alexandre Vara Alves |  |
| 28-09-2022                 | 28-09-2022                        | 04-10-2022                           | 07-11-2022                 |  |