

Course Unit	Manufacturing Process			Field of study	Mechanical Constructions	
Master in	Industrial Engineering - Electrical Engineering			School	School of Technology and Management	
Academic Year	2022/2023	Year of study	1	Level	2-1	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9572-355-1103-00-22	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	E OT O O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s) João Eduardo Pinto Castro Ribeiro

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Apply the concepts and the technologies involved in the new manufacturing environment.
 Know and distinguish the production technologies in the context of computer integrated manufacturing

Prerequisites

Before the course unit the learner is expected to be able to:

- Know and characterize the main conventional manufacturing processes.
 Have a good knowledge of English language: written and spoken.

Course contents

Basics notions of Computer Integrated Manufacturing. Production Engineering: Planning and control of production aided by computer. Computer Aided Manufacturing: Multi-axis Machining and High Speed Machining. Simulating the manufacturing processes and virtual manufacturing.

Course contents (extended version)

- 1. Basics notions of Computer Integrated Manufacturing: Nature of CIM. 2. Functions of Production. New logics of Production.

- Manufacturing and Environment.
 Project for the manufacture and assembly, as well as a Rapid Manufacturing of prototypes.

- Hondricking and summarized assembly, as well as a Rapid Manufal.
 Project for the manufacture and assembly, as well as a Rapid Manufal.
 Reverse engineering:

 Planning the production aided by computer.
 Control of production aided by computer.

 Automated systems to support production.
 Computer Aided Manufacturing:

 Multi-axis Machining.
 High Speed Machining.
 Advanced Processes for polishing and finishing.

 Computer Aided Manufacturing: CNC Punch Survey.
 Simulating the manufacturing processes and virtual manufacturing.
 Intelligent Manufacturing.

 Cases of advanced machining
 Machining aeronautical materials and biomaterials.
 Machining biomaterials.

Recommended reading

- Ribeiro, J., "Processos de Fabrico", IPB-ESTI, 2009.
 Teicholz, Eric and Orr, Joel N., "Computer Integrated Manufacturing Handbook", McGraw Hill International Editions; 1989.
 Chang, Tien-Chien; Wysk, Richard A. e Wang, Hsu-Pin, "Computer Aided Manufacturing", Prentice Hall Inc.; 1991.
 Groover, Mikell P., "Automation, Production Systems, and Computer Integrated Manufacturing", Prentice Hall Inc.; 1987.
 Rocha, A. Barata; "Puncionadoras CNC", ISBN: 972-8826-01-X.

Teaching and learning methods

Theoretical-practices classes are used with an expository component of the theoretical subjects and a practical component of problems resolution and practical cases analysis. It is also used the interrogative method, questioning the students systematically about the most important elements of the course. In non-presence environment is proposed the resolution of problems and accomplishment works.

Assessment methods

- 1. Alternative 1 (Regular, Student Worker) (Final) Final Written Exam 20%

- Practical Work 80%
 Alternative 2 (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 100%

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation			
João Eduardo Pinto Castro Ribeiro	João da Rocha e Silva	José Alexandre de Carvalho Gonçalves	Paulo Alexandre Vara Alves
06-10-2022	06-10-2022	06-10-2022	04-11-2022

This document is valid only if stamped in all pages