

Course Unit	Data analysis			Field of study	Information Systems		
Bachelor in	Management Informatics			School	School of Technology and Management		
Academic Year	2021/2022	Year of study	3	Level	1-3	ECTS credits 6.0	
Туре	Semestral	Semester	2	Code	9186-709-3201-00-21		
Workload (hours)	162	Contact hours	T - TP	60 PL - T	- s -	E - OT - O -	
T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other							

Name(s) of lecturer(s) Maria Prudência Gonçalves Martins

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:

 1. Organize and prepare less structured data for computer analysis, correcting errors and imputing missing data. Synthesize key characteristics and choose the most correct visualization for a data set.
- Apply inferential techniques for analysis and modeling techniques, such as linear regression and clustering. Construct models involving data of time series.
 Test and validate the models and results of the performed analysis. Master a high-level tool (R environment) and using it in complex data analysis and modeling problems

Prerequisites

- Before the course unit the learner is expected to be able to:
 1. Apply basic concepts of quantitative methods and statistics;
 2. Use knowledge of informatics and operate computer programs (software).

Course contents

Statistical inference and non parametric tests. Forecasting methods. Simple and multiple regression. Estimation of models with discrete choices

Course contents (extended version)

- 1. Statistical inference and non parametric tests

 - Concepts recap: confidence intervals, hypothesis tests, p-values, types I and II statistical errors
 Inference on quantitative data: t tests, 1-factor analysis of variance, correlation and independence
 Inference on qualitative data: Chi-squared test for 1 sample and for contingency tables
- Forecasting methods
 Terminology and basic tools for analyzing time series and forecasting methods
- Terminology and basic tools for analyzing time series and forecasting
 Time series decomposition
 Exponential smoothing techniques and ARIMA models
 Introduction to state space models for computing forecasting intervals
 Dynamic regression
 Simple and multiple regression
 Models' classical hypothesis
 Ordinary Least Squares (OLS) estimators and properties
 Extensions: Functional forms, dummy and lag variables
 Adjustment precision indicators
 Classical hypothesis violations: multicollinearity beteroscedasticity, au

- Classical hypothesis violations: multicollinearity heteroscedasticity, autocorrelated disturbances
 Estimation of models with discrete choices
- - Logit model: estimation and inference
 Probit model: estimation and inference
- Basic clustering techniques distances
 Distances

 - Hierarchical models
- k-means algorithm
 Repeatation of data for analysis and modeling in R environment
 Structuring, correction of errors and imputation of missing values
 Techniques for summarization and visualization of data

Recommended reading

- Guimarães, R. C. & Sarsfield C. (2010). Estatística. Verlag Dashofer.
 Hyndman, R. J. & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (http://otexts. org/fpp/)
 Zumel N. & Mount J. (2014). Practical Data Science with R. Manning Publications Co.
 Gareth J. , Witten D. , Trevor H. & Robert T. (2014). An Introduction to Statistical Learning. Springer
 Gujarati D. , Provost F. & Fawcett T. (2013). Data Science for Business. O'Reilly Media.

Teaching and learning methods

In class there will be a presentation and description of contents and analysis and resolution of small application examples accompanied by practical exercises conducted using statisticalsoftware. During the contact period the students must review the materials taught, solve application exercises and elaborate practical reports that include empirical applications of real problems.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary)
 Practical Work 50% (2 pratical works (30% e 20% each))
 Final Written Exam 50%
- 2. Alternative 1 (Student Worker) (Final, Supplementary, Special)
- Final Written Exam 100%
 3. Alternative 3 (Regular) (Special)
 Final Written Exam 100%

This document is valid only if stamped in all pages.

Language of instruction

- Portuguese
 Portuguese, with additional English support for foreign students.

ectro		

Maria Prudência Gonçalves Martins	António Jorge da Silva Trindade Duarte	José Carlos Rufino Amaro	Paulo Alexandre Vara Alves
04-03-2022	10-03-2022	12-03-2022	18-03-2022