

Course Unit	Statistics			Field of study	Mathematics	
Bachelor in	Management			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9147-707-2103-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	E - OT - O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Oth

Name(s) of lecturer(s)

Maria Prudência Gonçalves Martins, Ricardo Alexandre Saraiva Gomes

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Apply and to interpret the most common ways of representing and synthesize the information in a dataset; 2. Understand the basic concepts related to random variables and perform simple calculations based on them; 3. Know and to manipulate, at a basic level, the most common random variables and use them to model simple situations; 4. Understand the probability concept and its axioms and compute simple probability using the basic probability and combinatorics laws; 5. Compute point and interval estimates for the most common population parameters; 6. Understand and to apply the hypothesis test methodology on the most common population parameters.

Prerequisites

- Before the course unit the learner is expected to be able to:
- 1. Manipulate basic mathematical concepts 2. Use a spreadsheet

Course contents

Introduction. Descriptive Statistics. Basic Probability Theory. Random Variables and Probability Distributions. Joint Probability Distributions. Characterization of Some Discrete Distributions. Characterization of Some Continuous Distributions. Random Sampling and Sampling Distributions. Point Estimation. Interval Estimation. Hypothesis Tests.

Course contents (extended version)

1. Introduction

This document is valid only if stamped in all pages

- The statistical object Descriptive statistics and statistical inference Populations and samples
- 2. Descriptive Statistics Data classification

 - Qualitative and quantitative data
 Univariate samples characterization
 Location statistics (average, median and mode) e dispersion (variance)
 Skew and Kurtosis coefficients
- Skew and Nurrosis coefficients
 Bivariate samples characterization
 Calculation of a linear relation coefficients using least squares
 Correlation and determination coefficients
 Basic Probability Theory
 Random experiments, sampling spaces and events
 Combinatorics

- Conditional probability concept
 Conditional probability
 Independent events
 Bayes' theorem
 4. Random Variables and Probability Distributions
 Definition of random variable

- Describe the analysis of the anal

- Joint Probability Distributions
 Definition of joint distributions
 Marginal distributions
 Conditional distributions

 - Independence
 Covariance and correlation
- Covariance and contention
 Variable combinations
 Calculation of a combination expected value and variance: linear and non linear combinations
 Characterization of Some Discrete Distributions
 Binomial distribution

- Negative Binomial distribution
 Hypergeometric distribution
 Relations between the Binomial and the Hypergeometric distributions
- Poisson distribution
- Relations between the Poisson and the Binomial and Hypergeometric distributions
 Characterization of Some Continuous Distributions

 - Uniform distribution
 Exponential distribution
 Relations between the Poisson and Exponential distributions
 Normal distribution

 - Normal distribution
 Standard Normal distribution
 Linear combination of independent Normal variables
 Relations between the Normal and Binomial distributions
 Chi-squared, Student's t and F distributions
- 8. Random Sampling and Sampling Distributions
 Distribution of sample mean
 Expected value and variance for sample mean
 Sample mean distribution shape for Normal populations
 - Central limit theorem

Course contents (extended version)

- Implications on sampling distributions
 Random sample generations using Monte Carlo method
 Generation of random U(0, 1) samples
 Generation of random samples for discrete and for continuous populations
- 9. Point Estimation
 - Estimators and estimates
 - Desirable estimator properties: unbiased, efficient and consistent
 Estimation methods: maximum likelihood and least squares
- Estimator selection 10. Interval Estimation

 - Interval Estimation
 Confidence interval concept
 Confidence interval specification
 Confidence intervals for the continuous populations mean
 Confidence intervals for the Binomial proportion: small and large samples
 Confidence intervals for a Normal population variance
 Confidence intervals for the mean difference between two continuous populations
 Confidence intervals for the proportion difference with large samples
 Confidence intervals for the variance ratio of Normal populations
 Sample size determination
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals for the variance ratio of Normal populations
 Confidence intervals
 Confidence
 Confidence intervals
 Confidence
 Confidence
- Sample size determination
- 1. Hypothesis Tests
 Basic hypothesis test procedure
 Hypothesis definition

 - Type l error and significance
 Calculation of test statistics and decision making
 - P-value

 - Type II error and statistical power
 Relations between hypothesis tests and confidence intervals
 Reference to the most common tests

Recommended reading

- 1. Guimarães, Rui C., Sarsfield Cabral, José A. (2010). Estatística (2ª edição). Verlag Dashöfer Portugal. ISBN: 9789896421083 (texto principal) 2. Pedrosa, António C., Gama, Sílvio Marques A. (2018). Introdução Computacional à Probabilidade e Estatística (3ª edição). Porto Editora. ISBN: 9789720019905 3. Wonnacott, Ronald J., Wonnacott, Thomas H. (1990). Introductory Statistics for Business and Economics (4th edition). John Wiley and Sons Ltd. ISBN: 9780471615170
- 4. Anderson, David R., Sweeney, Dennis J., Williams, Thomas A. (2015). Modern Business Statistics with Microsoft Excel (6th edition). Cengage Learning. ISBN: 9781285867045
- 5. Zumel N. & Mount J. (2014). Practical Data Science with R. Manning Publications Co

Teaching and learning methods

Contents will be covered with student attendance, in theoretical-practical classes, as well as the analysis and solution of exercises. Non-contact hours should be spent reviewing the lectured contents and solving practical exercises with the aid of computer tools. Tutorial sessions might be held in non-contact hours, if necessary, individually or in groups.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%

 Alternative 2 (Regular, Student Worker) (Final)

 Intermediate Written Test 40% (To be held during classes.)
 Intermediate Written Test 40% (To be held at the end of the semester.)
 Intermediate Written Test 20% (4 Quizzes with simple quick-answer questions to to be done during the semester.)

Language of instruction

Portuguese, with additional English support for foreign students

Electronic validation			
Maria Prudência Gonçalves Martins	Carla Alexandra Soares Geraldes	António Borges Fernandes	José Carlos Rufino Amaro
06-10-2023	10-10-2023	10-10-2023	20-10-2023