

Course Unit Separation Processes			Field of study	Chemical Process Engineering		
Bachelor in	chelor in Chemical Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9125-755-3202-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC -	E · OT · O · Fieldwork; S · Seminar; E · Placement; OT · Tutorial; O · Other

Name(s) of lecturer(s)

José António Correia Silva

- Learning outcomes and competences
- At the end of the course unit the learner is expected to be able to:
- And the end of the course unit the learner is expected to be able to:
 Apply the principles of phase equilibrium and mass and energy balances in single separation units
 Understand the concept of cascade separation
 Analyze and design separation processes by liquid-liquid extraction
 Be able to analyze and design separation processes by distillation
 Analyze and design separation processes by absorption and stripping

Prerequisites

Before the course unit the learner is expected to be able to: Dominate basic concepts of thermodynamics, heat and mass transfer

Course contents

Single equilibrium stages and flash calculations. Cascades. Liquid-liquid extraction. Distillation of binary mixtures. Absorption and stripping

Course contents (extended version)

- 1. Single equilibrium stages and flash calculation
- Separation cascades

 Cocurrent, crosscurrent and countercurrent Cascade
 Liquid-liquid extraction
- - Équipment
- General design considerations
 Hunter–Nash graphical equilibrium-stage method
 Maloney-Schubert graphical equilibrium-stage method
 Distillation of binary mixtures

 - Equipment

 - General design considerations
 McCabe–Thiele graphical equilibrium method
 Ponchon-Savart graphical equilibrium-stage
 Nearest constraints in the second second
- 5. Absorption and stripping - Equipment

 - General design considerations
 Graphical equilibrium-stage methods

Recommended reading

- J. D. Seader, Ernest J. Henley, Separation Process Principles, John Wiley & Sons, 2nd Edition, 2006.
 Christie John Geankoplis, Transport Processes and Separation Process Principles, Prentice-Hall, 4th Edition, 2003.

Teaching and learning methods

Theory: Description of theoretical concepts Practice: Discussion of course materials and homework assignments

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Intermediate Written Test 30% (Week 5)
 Intermediate Written Test 30% (Week 10)
 Intermediate Written Test 40% (Week 15)

 Alternative 2 (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%

Language of instruction

English

	Electronic validation				
	José António Correia Silva	Hélder Teixeira Gomes	António Manuel Esteves Ribeiro	José Carlos Rufino Amaro	
J	12-02-2024	13-03-2024	13-03-2024	16-03-2024	