

Course Unit	Separation Processes			Field of study	Chemical Process Engineering	
Bachelor in	in Chemical Engineering			School	School of Technology and Management	
Academic Year	2022/2023	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9125-755-3202-00-22	
Workload (hours)	162	Contact hours	00 IF		C - S -	E - OT - O Fieldwork; S - Seminar, E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s) José António Correia Silva

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Apply the principles of phase equilibrium and mass and energy balances in single separation units. Understand the concept of cascade separation

- 3. Analyze and design separation processes by liquid-liquid extraction
 4. Be able to analyze and design separation processes by distillation
 5. Analyze and design separation processes by absorption and stripping

Prerequisites

Before the course unit the learner is expected to be able to: Dominate basic concepts of thermodynamics, heat and mass transfer

Course contents

Single equilibrium stages and flash calculations. Cascades. Liquid-liquid extraction. Distillation of binary mixtures. Absorption and stripping

Course contents (extended version)

- 1. Single equilibrium stages and flash calculation
- Separation cascades
 Cocurrent, crosscurrent and countercurrent Cascade
 Liquid-liquid extraction
- - Equipment
- Equipment
 General design considerations
 Hunter–Nash graphical equilibrium-stage method
 Maloney-Schubert graphical equilibrium-stage method
 4. Distillation of binary mixtures
- Equipment
- General design considerations McCabe–Thiele graphical equilibrium method Ponchon-Savarit graphical equilibrium-stage
- 5. Absorption and stripping

 - General design considerations
 - Graphical equilibrium-stage methods

Recommended reading

- J. D. Seader, Ernest J. Henley, Separation Process Principles, John Wiley & Sons, 2nd Edition, 2006.
 Christie John Geankoplis, Transport Processes and Separation Process Principles, Prentice-Hall, 4th Edition, 2003.

Teaching and learning methods

Theory: Description of theoretical concepts Practice: Discussion of course materials and homework assignments

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)
 Intermediate Written Test 30% (Week 5)
 Intermediate Written Test 30% (Week 10)
 Intermediate Written Test 40% (Week 15)
 Alternative 2 (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 100%

Language of instruction

English

TIA OFFIC	n: ~	alidation
- rieciro	111(: V>	anoanon

Liectronic validation					
	José António Correia Silva	Hélder Teixeira Gomes	Ramiro José Espinheira Martins	José Carlos Rufino Amaro	
1	16-02-2023	21-03-2023	21-03-2023	25-03-2023	