

Course Unit	Transport Phenomena II			Field of study	Thermodynamics and Transport Phenomena	
Bachelor in	Chemical Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9125-755-3101-00-23	
Workload (hours)	162	Contact hours	T 30 TP T - Lectures; TP - Lectures a	- PL 30 T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC -	E · OT · O · Fieldwork; S · Seminar; E · Placement; OT · Tutorial; O · Other

Name(s) of lecturer(s)

Rolando Carlos Pereira Simões Dias

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
- Identify the fundamentals of mass transfer.
 Apply general equations of conservation of mass and mass transfer in the presence of chemical reactions and using rectangular, cylindrical and spherical coordinates
- Apply equations of conservation and transport in steady-state molecular diffusion process.
- Analyze unsteady-state molecular diffusion. Identify local convective mass transfer coefficients and the correspondent mean mass transfer coefficient.
- 6. Quantify convective mass transfer between phases using the two resistance theory.
 7. Apply convective mass transfer correlations for systems involving different flows and geometries. Design mass transfer equipment.
 8. Apply MATLAB in the numerical resolution of mass transfer problems, namely considering initial value problems (IVP) and boundary value problems (BVP).

Prerequisites

- Before the course unit the learner is expected to be able to: 1. Know and quantify heat transfer phenomena.
- 2. Establish and solve conservation laws

Course contents

Diffusion and convection mass transfer and equations governing these processes. General equations of conservation of mass in the presence of chemical reactions. Steady-state and unsteady-state molecular diffusion. Convective mass transfer coefficient. Mass transfer between phases. Convective mass transfer correlations. Mass transfer devices. The course includes also experimental work concerning the study of diffusional processes, namely involving hydrogels with biotechnological applications.

Course contents (extended version)

- 1. Diffusion and convection mass transfer and equations governing these processes Fick's first law of diffusion
- Fick s first law of diffusion
 Convective mass transfer
 Models to predict diffusion coefficients
 Correlations to estimate convective mass transfer coefficients
 General equations of conservation of mass in the presence of chemical reactions
 - Equations of conservation of mass in rectangular, cylindrical and spherical coordinates Fick's second law of diffusion
- Analogies between heat and mass transfer
 Analogies between heat and mass transfer
 Steady-state molecular diffusion
 One dimension diffusion without chemical reaction
 Arnold diffusion cell

 - Pseudo-steady-state diffusion
 Equimolar counter diffusion
- Diffusion associated with chemical reaction
 Steady-state diffusion in multidimensional systems
 Unsteady-state molecular diffusion
 Semi-infinite medium

 - Finite-dimensional medium with negligible surface resistance Gurney-Lurie charts

- Survey-Lune charts
 Local convective mass transfer coefficient
 Significant parameters in convective mass transfer
 Convective mass and energy transfer analogies
 Hydrodynamic, thermal and concentration boundary-layers theory
- Mass transfer between phases

 Two-resistance theory

- Individual mass transfer coefficients
 Overall mass transfer coefficients
 Convective mass transfer correlations
 Influence of hydrodynamics and geometry
 Capacity coefficients for contact towers
 Design of mass transfer equipment
 Core transfer togets togets in well mixed training the second s
- - Gas-liquid mass transfer in well mixed tanks
 Continuous contact towers

 - Height of continuous columns operating in co or countercurrent flow

Recommended reading

- Fundamentals of Momentum, Heat, and Mass Transfer, J. Welty, G. L. Rorrer, D. G. Foster, 7th Ed, Wiley, 2019
 Transport Phenomena, RB Bird, WE Stewart, EN Lightfoot, Revised Second Edition, 2007
 Transport Phenomena, W. J. Beek, K. M. K. Muttzall, J. W. van Heuven, Wiley, 2nd Edition, 2000
 Fundamentos de Transferência de Massa, Maria Norberta de Pinho, Duarte Miguel Prazeres, 2ª ed., IST Press, 2014
 Elementos de Fenómenos de Transferência II, Rolando Dias, ESTIG, IPB, 2019

Teaching and learning methods

The unit will be taught using a combination of lectures, self guided learning and practice classes. Students will be provided with a study guide and support material, including e-learning facilities.

Assessment methods

Alternative 1 - (Regular, Student Worker) (Final, Supplementary, Special)

 Practical Work - 20%
 Intermediate Written Test - 25%
 Intermediate Written Test - 25%
 Final Written Exam - 30%

 Alternative 2 - (Regular, Student Worker) (Special)

 Final Written Exam - 100%

 Alternative 3 - (Student Worker) (Final, Supplementary)

 Final Written Exam - 100%

Language of instruction

English

Electronic validation			
Rolando Carlos Pereira Simões Dias	Hélder Teixeira Gomes	Ramiro José Espinheira Martins	José Carlos Rufino Amaro
08-10-2023	25-10-2023	25-10-2023	31-10-2023