

Course Unit	Statistics			Field of study	Mathematics	
Bachelor in	Chemical Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9125-755-2101-00-23	
Workload (hours)	162	Contact hours	1 00 17		C - S -	E - OT - O Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other
			1 - Lectures, TP - Lectures a	na problem-solving, PL - Problem-	solving, project or laboratory, TC	- Pielowork, 3 - Seminar, E - Piacement, OT - Tutoriar, O - Other
Name(s) of lecturer(s) António Man		al Estavas Ribairo				

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to:

 1. Apply and to interpret the most common ways of representing and synthesize the information in a dataset;

 2. Understand the basic concepts related to random variables and perform simple calculations based on them;

 3. Know and to manipulate, at a basic level, the most common random variables and use them to model simple situations;

 4. Understand the probability concept and its axioms and compute simple probability using the basic probability and combinatorics laws;

 5. Compute point and interval estimates for the most common population parameters;

 6. Understand and to apply the hypothesis test methodology on the most common population parameters.

Prerequisites

Before the course unit the learner is expected to be able to:

- Manipulate basic mathematical concepts
 Use a spreadsheet

Course contents

Introduction. Descriptive Statistics. Basic Probability Theory. Random Variables and Probability Distributions. Joint Probability Distributions. Characterization of Some Discrete Distributions. Characterization of Some Continuous Distributions. Random Sampling and Sampling Distributions. Point Estimation. Interval Estimation. Hypothesis Tests.

Course contents (extended version)

- 1. Introduction

 - The statistical object
 Descriptive statistics and statistical inference
 Populations and samples
- Descriptive Statistics
 Data classification

 - Qualitative and quantitative data
 Univariate samples characterization
 Location statistics (average, median and mode) e dispersion (variance)
 Skew and Kurtosis coefficients
- Skew and Nurrosis coefficients
 Bivariate samples characterization
 Calculation of a linear relation coefficients using least squares
 Correlation and determination coefficients
 3. Basic Probability Theory
 Random experiments, sampling spaces and events
 Combinatorics
 The probability appears

- Combinatorics
 The probability concept
 Conditional probability
 Independent events
 Bayes' theorem
 4. Random Variables and Probability Distributions
 Definition of random variable
- - Discrete variables: probability function and cumulative probability function
 Continuous variables: probability density function and cumulative density function
 Distribution parameters
 Variable transformations: linear and non linear transformations

- Variable transformations. Insection
 Joint Probability Distributions
 Definition of joint distributions
 Marginal distributions
 Conditional distributions

 - Independence
 Covariance and correlation
- Covariance and correlation
 Variable combinations
 Calculation of a combination expected value and variance: linear and non linear combinations
 6. Characterization of Some Discrete Distributions
 Binomial distribution

 Property of the Property of
- - Negative Binomial distribution
 Hypergeometric distribution
 Relations between the Binomial and the Hypergeometric distributions
 - Poisson distribution
- Relations between the Poisson and the Binomial and Hypergeometric distributions
 Characterization of Some Continuous Distributions
- - Uniform distribution
 Exponential distribution
 Relations between the Poisson and Exponential distributions
 Normal distribution

 - Normal distribution
 Standard Normal distribution
 Linear combination of independent Normal variables
 Relations between the Normal and Binomial distributions
 Chi-squared, Student's t and F distributions
- Random Sampling and Sampling Distributions
 Distribution of sample mean
 Expected value and variance for sample mean
 Sample mean distribution shape for Normal populations
 Control limit theorem.
 - Central limit theorem

Course contents (extended version)

- Implications on sampling distributions
 Random sample generations using Monte Carlo method
 Generation of random U(0, 1) samples
 Generation of random samples for discrete and for continuous populations
- 9. Point Estimation
 - Estimators and estimates
 - Desirable estimator properties: unbiased, efficient and consistent Estimation methods: maximum likelihood and least squares
- Estimator selection
 Interval Estimation

 - Interval Estimation

 Confidence interval concept

 Confidence interval specification

 Confidence intervals for the continuous populations mean

 Confidence intervals for the Binomial proportion: small and large samples

 Confidence intervals for a Normal population variance

 Confidence intervals for the mean difference between two continuous populations

 Confidence intervals for the proportion difference with large samples

 Confidence intervals for the variance ratio of Normal populations

 Sample size determination
- Sample size determination
- 11. Hypothesis Tests
 Basic hypothesis test procedure
 Hypothesis definition

 - Type I earn definition
 Test statistic characterization
 Decision rule definition
 Type I error and significance
 Calculation of test statistics and decision making
 - P-value

 - Type II error and statistical power
 Relations between hypothesis tests and confidence intervals
 Reference to the most common tests

Recommended reading

- 1. Guimarães, Rui C., Sarsfield Cabral, José A. (2010). Estatística (2ª edição). Verlag Dashöfer Portugal. ISBN: 9789896421083 (texto principal)
 2. Pedrosa, António C., Gama, Sílvio Marques A. (2018). Introdução Computacional à Probabilidade e Estatística (3ª edição). Porto Editora. ISBN: 9789720019905
 3. Wonnacott, Ronald J., Wonnacott, Thomas H. (1990). Introductory Statistics for Business and Economics (4th edition). John Wiley and Sons Ltd. ISBN: 9780471615170
- Anderson, David R., Sweeney, Dennis J., Williams, Thomas A. (2015). Modern Business Statistics with Microsoft Excel (6th edition). Cengage Learning. ISBN: 9781285867045

Teaching and learning methods

Contents will be covered with student attendance, in theoretical-practical classes, as well as the analysis and solution of exercises. Non-contact hours should be spent reviewing the lectured contents and solving practical exercises from the worksheets. Tutorial sessions might be held in non-contact hours, if necessary, individually or in groups.

Assessment methods

- Final Exam 100% (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%

 Alternative 2 (Regular, Student Worker) (Final)

 Intermediate Written Test 50% (To be held ouring classes, only for students attending classes during the present school year.)
 Intermediate Written Test 50% (To be held on the day of the exam.)

 English Class (Regular, Student Worker) (Final)

 Intermediate Written Test 25%
 Final Written Exam 25%
 Practical Work 40%
 Portfolio 10% (Classroom work.)

Language of instruction

- Portuguese
 English

Flectronic validation

António Manuel Esteves Ribeiro	Carla Alexandra Soares Geraldes	Ramiro José Espinheira Martins	José Carlos Rufino Amaro
01-10-2023	05-10-2023	07-10-2023	10-10-2023