

Course Unit	Fluid Power			Field of study	Fluid Mechanics and Hydraulics		
Bachelor in	Mechanical Engineering			School	School of Technology and Management		
Academic Year	2023/2024	Year of study	3	Level	1-3	ECTS credits	6.0
Туре	Semestral	Semester	2	Code	9123-759-3204-00-23		
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	E - OT - Fieldwork; S - Seminar; E - Place	- O - ement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Sérgio Manuel de Sousa Rosa

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
- Active end of the course unit the rearrer is expected to be able to.
 Express a physical quantity as a suitable unit. Know the units.
 Acquire knowledge about transmission, command and control techniques through pneumatic and hydraulic oils, namely in the components dimensioning.
 Describe the different components used in pneumatic and hydraulic oils, as well as their function, functioning and specific aspects related to security.
 Solve and analyse pneumatic and hydraulic circuits in Mechanical Engineering.
 Develop the ability to lead laboratory experiences.

Prerequisites

- Before the course unit the learner is expected to be able to: 1. Distinguish physical and chemical properties in fluids;
- 2. Recognize the constituent parts of a mechanism.

Course contents

Understand hydraulics oils and air as a fluid, their behaviour, physical properties and principles. Present circuit components, function and functioning principles. work automation processes to simplify their control and minimize problems.

Course contents (extended version)

- Introduction to Hydrostatic Transmissions

 Advantages and disadvantages
 energy sources
 Classification of hydraulic circuits

 Basic Principles of Hydrostatic Transmissions

- pressure
 Pascal's principle

- Pascal s principle
 Energy conservation
 Units in hydraulic systems
 Hydraulic / Pneumatic Oils
 Types of hydraulic oils and their classification
 Compressed air
- Physical and chemical properties 4. Circuits
 - Examples of hydraulic circuits
 - Installation care of pneumatic circuits
- Symbols 5. Compressors, Hydraulic Pumps and Motors

 - symbols type-circuits Characteristic curves
- Applications
 Hydraulic Actuators
 Linear actuators (simple, double and triple effect)
 - Actuators standardisation and selection Applications

- Applications
 Valves and applications
 Hydraulic Accumulators
 Types of accumulators
 Accumulator dimensioning
- Applications 9. Hydraulic / Pneumatic Tanks
- Function Dimensioning
- Components Pressure tanks 10. Hydraulic / Pneumatic Filters Filter function and distinction
 - Selection Constitution
- 11. Electro-Hydraulic / Pneumatic Logic and Karnaugh maps

 - Structure of a control circuit
 Sequence diagrams
- Practical examples of electro-hydraulic circuits
 Software usage for understanding circuits and faultfinding
 From Grafcet to Ladder diagram
 Security systems

- 13. Systems analysis and simplification

Recommended reading

- 1. Rohner, Peter, "Industrial Hydraulic control" 2. "Hydraulics: Theory and Applications" Bosch, 1998

Teaching and learning methods

Lessons will be regularly interrupted by teacher's questions, suggestions and presentation of students and teacher experiences. Even daily experience will be used to acquire some basic concepts. Individual development of pneumatic or hydraulic circuits. Exercise solving. Resort to computers, experiences and bibliography.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Intermediate Written Test 50% (1st written midterm test)
 Intermediate Written Test 50% (2nd written midterm test)

 Exame (Regular, Student Worker) (Supplementary)

 Final Written Exam 100% (Written Exam)

 Special Exam (Regular, Student Worker) (Special)

 Final Written Exam 100% (Written Exam)

Electronic validation

Sérgio Manuel de Sousa Rosa	Debora Rodrigues de Sousa Macanjo Ferreira	João da Rocha e Silva	José Carlos Rufino Amaro
04-03-2024	04-03-2024	09-03-2024	16-03-2024