

Course Unit	Machine Design			Field of study	Mechanical Constructions	
Bachelor in	Mechanical Engineering			School	School of Technology and Management	
Academic Year	2022/2023	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9123-759-3103-00-22	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	E - OT - O 60 - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s) Carlos Alberto Rodrigues Andrade

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
- At the end of the course unit the learner is expected to be able to: 1. Be able to generally characterize and compare the different types of power transmission machinery elements. 2. Get ability to calculate and design components to fatigue. 3. Understanding kinetically and dynamically and analyse the operation of spur and helical gears transmissions. 4. Know the types, applications and key features of rolling bearings and bearings. 5. Being able to select/design power transmission by belts and mechanical chains. 6. Get ability to proper handling of tables, abacus and standards. 7. Know and identify functions of shafts and associated parts.

Prerequisites

Before the course unit the learner is expected to be able to: Without requirements

Course contents

Introduction to fatigue project design. Power mechanical transmissions and power screws. Belts Transmission Design. Chains Transmission Design. Gears -Fundamentals. Spur Gears. Helical Gears. Rolling Bearings. Springs. Welding and other permanent connections. Threaded connections. Tribology and lubricants. Springs and dampers. Shafts and Associated Parts.

Course contents (extended version)

- 1. Introduction to mechanical design
 - Concept of mechanical design Most usefull materials in mechanical design
- Most useful frateflats in meetianical design.
 Fatigue
 Gear Transmission Design

 Types and components; Kinematic analysis; Selection of transmission, Teeth countour properties.
 Theeth correction; Interference; Efficiency; Chain gears; Manufacturing processes;
 Damage in the teeth; Lubrication; Gear;

 Spur Gears Fundamentals.

 Dynamic analysis;
 Kinematics of gears Geometry of gearing; Involute Properties;

- Kinematics of gears Geometry of gearing; Involute Properties;
 Helical cylindrical Gears:

- Design Fundamentals Dynamic Analysis; Tables and charts for Design.
 5. Roller Bearings:

 Types/applications; bearing life; Loads; selection, lubrication, mounting and dismounting; Outages.

 6. Shafts and Associated Parts:
- Functions; Design of shafts; Couplings; Universal Joints; Selection.
 7. Draft chain drives:

- Types and elements; Kinematic analysis,
 Selection of transmission, assembly and maintenance; Dynamic analysis.
 Belts Transmission Design:
 Types of belts; Standardization; Geometry and speed (kinematic analysis);
- Selection of the transmission; Details of construction and assembly; Dynamic analysis
 Hydrostatic bearings:
- Types and applications; Rolling Bearing Life; Loads; Selection; Lubrication; Assembly/disassembly.
 Introduction to tribology and lubricants
- 11. Power screws. 12. Springs:
 - Type and function; Stress and strain; Helical springs design; Energy storage capacity.

Recommended reading

- Branco, C. M. et al., "Projecto de Órgãos de Máquinas", Fundação Calouste Gulbenkian, 2005.
 Shigley, J. E. et al., "Mechanical Engineering Design", SI Version, McGraw-Hill, 2014
 Ugural, A. C., "Mechanical Design Of Machine Components", 2nd ed. SI Version, McGraw-Hill, 2018.
 Hindhede, et al., Machine Design Fundamentals A Practical Approach, Edited by Prentice All.

Teaching and learning methods

In lecture classes shall be used expository and self-learning. In practical classes will be solved problems using the methods discussed in lecture classes. Use will be the technical manuals, eventually software and laboratories.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%
 Alternativa 2 (Student Worker) (Final)
 Practical Work 50%
 Final Written Exam 50%

This

Language of instruction	
Portuguese	

Electronic validation			
Carlos Alberto Rodrigues Andrade	João Eduardo Pinto Castro Ribeiro	João da Rocha e Silva	Paulo Alexandre Vara Alves
28-09-2022	28-09-2022	04-10-2022	07-11-2022