

Course Unit	Numeric methods			Field of study	Mathematics			
Bachelor in	Mechanical Engineering			School	School of Technology and Management			
Academic Year	2022/2023	Year of study	2	Level	1-2	ECTS credits	6.0	
Туре	Semestral	Semester	2	Code	9123-759-2203-00-22			
Workload (hours)	162	Contact hours		60 PL - T	C - S - solving, project or laboratory; TC	E - OT Fieldwork; S - Seminar; E - Place	- O -	
Name(s) of lecturer(s) Joao Paulo Pais de Almeida								
Learning outcomes and competences								
At the end of the course unit the learner is expected to be able to: 1. Use mathematical tools to solve numeric problems. 2. Relate the convergence and stability notions.								
Prerequisites								
Before the course unit the learner is expected to be able to: Have knowledge in the area of Linear Algebra and Mathematical Analysis.								

Course contents

Error Analysis. Nonlinear Equations. Approximation Theory. Numerical Differentiation and Integration. Systems of Linear Equations. Systems of Nonlinear Equations. Ordinary Differential Equations.

Course contents (extended version)

- 1. Error Analysis
- End Analysis
 Basic definitions of error theory.
 Error propagation formula.
 Stability and conditioning. Algorithms and convergence.
 Nonlinear Equations with one Variable
 - Bisection method.
 - Fixed-point method.
 - Newton method
 - Secand method
- Secand menuod.
 Roots of polynomials.
 3. Approximation Theory.
 Interpolation and the Lagrange polynomial. Newton's interpolatory divided-difference formula.
 Least-squares method. Orthogonal polynomials.
 4. Numerical Differentiation and Integration
 Numerical differentiation: Richardson extrapolation.
 Numerical integration: trapezoidal rule: Simpson's rule; Newton-Cotes formula.

- Numerical integration: trapezoidal rule; Simpson's rule; Newton-Cotes formula.

- Numerical integration: trapezoidal rule; Simpson's rule; New
 Linear Systems.
 Direct methods: Gaussian elimination with partial pivoting.
 Direct methods: matrix factorization LU and LDL^T.
 Norms of vectors and matrices.
 Iterative methods: Jacobi, Gauss-Seidel and SOR methods.
 Nonlinear Systems Equations
 Newton method.
 7. Ordinary Differential Equations
 Fulder's method Runge-Kutta method

- Euler's method. Runge-Kutta method.

Recommended reading

- Pereira, A., "Guia de Estudo de Métodos Numéricos", ESTiG-IPB, 2015.
 Gerald, C. e Wheatley, P., "Applied Numerical Analysis", 6th ed., Addison-Wesley, 1984.
 Conte, S. e Boor, C., "Elementary Numerical Analysis", McGraw-Hill, 1980.
 Atkinson, K., "An Introduction to Numerical Analysis", J. Wiley, 1978.
 Burden, R. e Faires, J., "Numerical Analysis", 7th ed., Brooks/Cole, 2000.

Teaching and learning methods

Topics will be presented and explored in class. There will be individual and group sessions outside class to accompany the student's work. All classes will be in informatics rooms using mathematical software (Matlab/Octave, Mathematica/Maple).

Assessment methods

- Continuous Evaluation (Regular, Student Worker) (Final, Supplementary)

 Practical Work 75% (2 reports and presentations. The presentation is mandatory. 15 % is associated to deliverables.)
 Final Written Exam 25%

 Final Evaluation (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam 100%

Language of instruction

Portuguese
 English

Electronic validation				
Joao Paulo Pais de Almeida	Florbela Alexandra Pires Fernandes	João da Rocha e Silva	José Carlos Rufino Amaro	
04-03-2023	06-03-2023	06-03-2023	10-03-2023	