

Course Unit	Statistic			Field of study	Mathematics	
Bachelor in	Mechanical Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9123-759-2101-00-23	
Workload (hours)	162	Contact hours	T - TP (60 PL - T	c - s -	E - OT - O -
			T - Lectures; TP - Lectures a	nd problem-solving; PL - Problem-	solving, project or laboratory; TC	- Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other
Name (a) of lacturar(a) Antique Augusto Nagueiro Drodo						

Name(s) of lecturer(s) António Augusto Nogueira Prada

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:

 1. Understand the probability concept and its axioms and compute simple probability using the basic probability and combinatorics laws;

 2. Understand the basic concepts related to random variables and perform simple calculations based on them;

 3. Know and to manipulate, at a basic level, the most common random variables and use them to model simple situations;

 4. Apply and to interpret the most common ways of representing and synthesize the information in a dataset;

 5. Compute point and interval estimates for the most common population parameters;

 6. Understand and to apply the hypothesis test methodology on the most common population parameters.

Prerequisites

Before the course unit the learner is expected to be able to:

- Manipulate basic mathematical concepts
 Use a spreadsheet

Course contents

Introduction. Basic Probability Theory. Random Variables and Probability Distributions. Joint Probability Distributions. Characterization of Some Continuous Distributions. Descriptive Statistics. Random Sampling and Sampling Distributions. Point Estimation. Interval Estimation. Hypothesis Tests.

Course contents (extended version)

- 1. Introduction

 - The statistical object
 Descriptive statistics and statistical inference
- Descriptive statistics and statistical inference
 Populations and samples

 Basic Probability Theory
 Random experiments, sampling spaces and events
 Combinatorics
 The probability concept
 Conditional probability
 Independent events
 Revent theorem
- Bayes theorem

 3. Random Variables and Probability Distributions

 - Definition of random variable
 Discrete variables: probability function and cumulative probability function
 Continuous variables: probability density function and cumulative density function
 Distribution parameters
- Variable transformations: linear and non linear transformations
 Joint Probability Distributions
 Definition of joint distributions
 Marginal distributions
 Conditional distributions
 Independence

- Covariance and correlation
 Variable combinations
- Calculation of a combination expected value and variance: linear and non linear combinations
 Characterization of Some Discrete Distributions
- - Binomial distribution
 Negative Binomial distribution

 - Hypergeometric distribution
 Relations between the Binomial and the Hypergeometric distributions
- Poisson distribution
 Relations between the Poisson and the Binomial and Hypergeometric distributions
 Characterization of Some Continuous Distributions
 Uniform distribution

 - Exponential distribution Relations between the Poisson and Exponential distributions Normal distributionStandard Normal distribution
- Standard Normal distribution
 Linear combination of independent Normal variables
 Relations between the Normal and Binomial distributions
 Chi-squared, Student's t and F distributions

 7. Descriptive Statistics
- - Descriptive Statistics

 Data classification

 Qualitative and quantitative data

 Univariate samples characterization

 Location statistics (average, median and mode) e dispersion (variance)

 Skew and Kurtosis coefficients

 Bivariate samples characterization

 Calculation of a linear relation coefficients using least squares

 Correlation and determination coefficients

- 8. Random Sampling and Sampling Distributions
 Distribution of sample mean
 Expected value and variance for sample mean
 Sample mean distribution shape for Normal populations
 Control limit theorem.
 - Central limit theorem

Course contents (extended version)

- Implications on sampling distributions
 Random sample generations using Monte Carlo method
 Generation of random U(0, 1) samples
 Generation of random samples for discrete and for continuous populations
- 9. Point Estimation
 - Estimators and estimates
 - Desirable estimator properties: unbiased, efficient and consistent Estimation methods: maximum likelihood and least squares
- Estimator selection
 Interval Estimation

 - Interval Estimation

 Confidence interval concept

 Confidence interval specification

 Confidence intervals for the continuous populations mean

 Confidence intervals for the Binomial proportion: small and large samples

 Confidence intervals for a Normal population variance

 Confidence intervals for the mean difference between two continuous populations

 Confidence intervals for the proportion difference with large samples

 Confidence intervals for the variance ratio of Normal populations

 Sample size determination

 - Sample size determination
- 11. Hypothesis Tests
 Basic hypothesis test procedure
 Hypothesis definition

 - Test statistic characterization
 Decision rule definition
 Type I error and significance
 Calculation of test statistics and decision making
 P-value

 - Type II error and statistical power
 Relations between hypothesis tests and confidence intervals
 Reference to the most common tests

Recommended reading

- Guimarães R. C. , & Cabral J. S. (2010). Estatística (2ª ed.). Verlag Dashöfer Portugal.
 Iman, R. , & Conover W. (1990). Modern business statistics (2nd ed.). John Wiley & Sons.
 Pedrosa, A. C. , & Gama S. M. (2018). Introdução computacional à probabilidade e estatística (3ª ed.). Porto Editora.
 Wonnacott, T. H. , Wonnacott, R. J. , & Golub, A. L. (1998). Introductory statistics & decision analysis: an integrated approach (5th ed.). John Wiley & Sons.

Teaching and learning methods

In the lectures, there will be content presentations and analysis of small practical examples. In the tutorials students will solve, under supervision, practical exercises. Non contact hours should be spent reviewing the lectured contents and solving practical exercises from the worksheets.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 100%
 Alternative 2 (Regular, Student Worker) (Final)
 Intermediate Written Test 50%

- Final Written Exam 50%

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation

António Augusto Nogueira Prada	Carla Alexandra Soares Geraldes	João da Rocha e Silva	José Carlos Rufino Amaro
03-11-2023	06-11-2023	06-11-2023	06-11-2023