

Unidade Curricular Eletricidade e Máquinas Elétricas			Área Científica	Física		
Licenciatura em Engenharia Mecânica			Escola	Escola Superior de Tecnologia e de Gestão de Bragança		
Ano Letivo	2022/2023	Ano Curricular	1	Nível	1-1	Créditos ECTS 6.0
Tipo	Semestral	Semestre	2	Código	9123-759-1204-00-22	
Horas totais de traba	alho 162	Horas de Contacto				E - OT - O -

Nome(s) do(s) docente(s) Fernando Jorge Teiga Teixeira, Ângela Paula Barbosa da Silva Ferreira, Ines Cristina Vinhas de Seixas, Victoria Clarissa de Abreu Melo

Resultados da aprendizagem e competências

No fim da unidade curricular o aluno deve ser capaz de:

- Aplicar convenientemente os conceitos e leis fundamentais relacionados com a Eletrostática e o Eletromagnetismo. Modelar e dimensionar sistemas Eletrostáticos e Magnetostáticos.
- Compreender os conceitos e leis fundamentais da corrente contínua e da corrente alternada e aplicar convenientemente as técnicas fundamentais utilizadas na sua análise.
- Compreender o funcionamento e aplicar os modelos matemáticos das máquinas elétricas, em especial dos motores e dos transformadores.
 Discutir aplicações práticas básicas de alguns componentes e sistemas utilizados na área da Engenharia Eletrotécnica.

Pré-requisitos

Antes da unidade curricular o aluno deve ser capaz de: Conhecer os formalismos matemáticos básicos.

Conteúdo da unidade curricular

Revisões matemáticas. Eletrostática. A energia. Corrente Contínua. Corrente alternada. Eletromagnetismo. Máquinas elétricas

Conteúdo da unidade curricular (versão detalhada)

- 1. Eletrostática
 - Conceitos gerais e carga elétrica.
 - Força, potencial e campo elétrico.
 - Trabalho e energia potencial.

 2. Corrente Contínua
 - Lei de Ohm e Joule.
 - Resistência elétrica e associação de resistências.
 - Potência elétrica e rendimento.
 - Fontes de tensão e de corrente reais e ideais.
 - Associação e equivalência de fontes.
 - Leis de Kirchhoff. Métodos matriciais para a resolução de circuitos complexos.
 - Teorema da sobreposição, teoremas de Thévenin e de Norton.
 - Dualidade e Equivalência.
 - Resposta transitória e resposta forçada.

 3. Corrente alternada
 - Transformada de Steinmetz.
- Resposat transloria e resposta forçada.
 3. Corrente alternada
 Transformada de Steinmetz.
 Lei de Ohm, Lei da Indução e Lei da Carga.
 Impedância, admitância e fator de potência.
 Circuitos RLC série e paralelo.
 Leis de Kirchhoff e métodos matriciais para a resolução de circuitos complexos.
 Teorema da sobreposição e teoremas de Thévenin e de Norton.
 Potência ativa, reativa e aparente.
 Ressonância série e paralelo.
 Correção do fator de potência.
 4. Eletromagnetismo
 Campo magnético e fluxo magnético.
 Circuitos magnéticos e eletroimanes.
 Lei de Laplace, de Faraday e de Lenz.
 Indução eletromagnética.
 Correntes de Foucault.
 Autoindução e indução mútua, ferromagnetismo e histerese.
 Equações de Maxwell.

- Equações de Maxwell.
 5. Máquinas elétricas
- - Conceitos gerais e exemplos práticos.
 Características funcionais de aparelhos existentes num laboratório.
 Modelos matemáticos e sua aplicabilidade no estudo comportamental de máquinas elétricas.

Bibliografia recomendada

- O'Malley, John, "Análise de Circuitos", McGraw- Hill, 1983
 Gussow, Milton, "Electricidade Básica", McGraw-Hill, 1985
 Villate, Jaime E., "Electromagnetismo", Mc Graw-Hill, 1999.
 Crummett, William P.; Western Arthur B., "University Physics Models and Applications", Wm. C. Brown, 1994
 Monteiro, Fernando, Sebenta de Eletrotecnia, ESTiG IPB, 2019.

Métodos de ensino e de aprendizagem

Aulas teóricas: exposição dos assuntos a tratar, acompanhadas pela resolução de problemas ilustrativos. Aulas práticas: Resolução de exercícios e de trabalhos

Alternativas de avaliação

1. Alternativa 1 - (Ordinário, Trabalhador) (Final, Recurso, Especial)

Alternativas de avaliação

- Exame Final Escrito 70%
 Trabalhos Laboratoriais 30% (Trabalhos laboratoriais e/ou trabalhos simulacionais)
 Alternativa 2 (Trabalhador) (Especial)
 Exame Final Escrito 100%

Língua em que é ministrada

Português, com apoio em inglês para alunos estrangeiros

Validação Eletrónica

Ângela Paula Barbosa da Silva Ferreira, Fernando Jorge Teiga Teixeira	José Luís Sousa de Magalhaes Lima	João da Rocha e Silva	José Carlos Rufino Amaro	
01-03-2023	11-03-2023	12-03-2023	17-03-2023	