

Course Unit	Distributed Systems			Field of study	Computer Engineering	
Bachelor in	Informatics Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9119-706-3203-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Luis Filipe Rodrigues Corredeira Lobo, Rui Pedro Sanches de Castro Lopes Name(s) of lecturer(s)

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to: 1. Distinguish a distributed system and understand the reasons for its implementation; 2. Understand the challenges of constructing distributed systems; 3. Differentiate between various models and architectures for distributed systems; 4. Identify problems inherent in concurrent execution of tasks in centralized and distributed environments and implement measures to address them; 5. Implement distributed systems using simple basic communication primitives; 6. Implement distributed systems using existing middleware.

Prerequisites

- Before the course unit the learner is expected to be able to:
- Know and have experience in object-oriented programming;
 Know the fundamental concepts of computer architectures;
 Know the fundamental concepts of operating systems;
 Know the fundamental concepts of computer networks.

Course contents

Characterization of distributed systems. Models of distributed systems. Java language. Programming with threads. Inter-process communication. Indirect communication. Architecture and middleware for distributed systems. Distributed coordination.

Course contents (extended version)

- 1. Characterization of distributed systems
 - Definition.
 - Characteristics.
 - Examples
- Challenges.
 Models of distributed systems.
 Physical models.
- - Architectural models.
- Fundamental models
- Fundamental models.
 3. Java language.
 Characteristics of the language.
 Concepts of object-oriented programming.
 Data types, operators, expressions, statements and blocks, flow control.
 Classes and objects. Interfaces and inheritance. Definition and use of generics.
 Collections framework.

- Conjection harding and streams manipulation.
 Programming with threads.
 Threads and Processes.
 Advantages and applications of multi-threading.
 Problems associated with multi-threading: Deadlock, livelock and starvation.
 Parallelization of problems, producer-consumer, thread pools.
- Parametrization of problems, producer-consumer, intead points, producer-consumer, pr

 - Component based middleware Web Services.
- Peer-to-peer networks.7. Distributed coordination.
- Clock synchronization.
- Election

Recommended reading

- Couloris, G, Dollimore, J. and Kinberg, T, Distributed Systems Concepts and Design, 5th Edition, Addison-Wesley, Pearson Education, 2011
 Andrew S. Tanenbaum and Maarten Van Steen, Distributed Systems: Principles and Paradigms, 2nd Edition, Prentice Hall, Pearson Education, 2007
 Rogers Cadenhead, Laura Lemay, Sams teach yourself java 6 in 21 days, Sams, 2007
 Jorge Cardoso, Programação de Sistemas Distribuídos em Java, FCA, 2008
 Manuais de referências e tutoriais na Internet

Teaching and learning methods

Lectures using the the expositive method. Problem-solving classes with demonstration of concepts by solving small practical exercises, with periods of resolution in the classroom and autonomous routing of additional tasks for non-presencial work hours. Use of the e-learning platform for the delivery of materials and submission of projects.

Assessment methods

Alternative 1 - (Regular, Student Worker) (Final, Supplementary, Special)
 Projects - 50%
 Final Written Exam - 50%

Language of instruction

1. English 2. Portuguese

Electronic validation Luis Filipe Rodrigues Corredeira Lobo, Rui Pedro Sanches de Castro Lopes Tiago Miguel Ferreira Guimaraes Pedrosa Luís Manuel Alves José Carlos Rufino Amaro 12-02-2024 14-03-2024 18-03-2024 24-03-2024