

Course Unit	Course Unit Artificial Intelligence			Field of study	Computer Science	
Bachelor in	n Informatics Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9119-706-3103-00-23	
Workload (hours)	162	Contact hours		60 PL - T		Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Paulo Duarte Ferreira Gouveia, Jose Paulo Machado Da Costa

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
- At the end of the Course of the trainer is expected to be able to. 1. demonstrate some domain of the Python programming language 2. build a predictive model supported by one of the machine learning algorithms 3. understand the differences and relationships between Classification and Regression (two types of Supervised Learning) 4. use distance metrics for prediction in Clustering (a type of Unsupervised Learning) 5. evaluate the performance of models with appropriate metrics 6. use cross-validation to find a better model 7. evalues the metric the metric provided and the period of the provided terms of the period of the period.

- 7. explore the main machine learning algorithms, for the classification and regression, available in the SciKit-learn package

Prerequisites

Before the course unit the learner is expected to be able to: program in an object-oriented language.

Course contents

Study of the Python language. Python packages for Machine Learning: NumPy, Pandas, Matplotlib, Seaborn and Scikit-Learn. Knowledge discovery in database (KDD). Supervised and unsupervised learning. Main machine learning algorithms: k-nearest neighbors (KNN), decision trees, random forests, support vector machines (SVM), neural networks and k-means. Dimensionality reduction.

Course contents (extended version)

- Introduction to the Python programming language

 variables, control structures, strings, functions, modules and packages
 - main data structures
- list comprehensions and generator expressions
 Object Oriented Programming with Python
 classes, initializer methods, static members and type of encapsulation supported
- inheritance and polymorphism
 iteration and persistence of objects
 Extending Python for Machine Learning
 NumPy

This document is valid only if stamped in all pages

- Pandas Matplotlib
- Seaborn Scikit-Learn
- Sciki-Learn
 Sciki-Lea

 - main machine learning algorithms
 performance evaluation metrics
- cross-validation evaluation
 5. Supervised Learning

 - linear regression
 logistic regression
 decision trees
 random forests

 - support vector machines SVM
 k-nearest neighbors KNN

- neural networks
 neural networks
 Unsupervised learning
 clustering using K-Means
 T. Dimensionality Reduction

 - principal component analysis (PCA)
 decomposition into singular values (SVD)
 - manifolds

Recommended reading

- Aprendizagem Computacional em Engenharia. Catarina Silva e Bernardo Ribeiro, Imprensa da Univ. Coimbra, 2018.
 Python Machine Learning. Wei-Meng Lee, John Wiley & Sons, Inc., 2019
 Scikit-learn Cookbook Over 80 recipes for machine learning in Python with scikit-learn. Second Edition, Julian Avila & Trent Hauck, Packt, 2017
 A Byte of Python. Swaroop C H, 2016, https: //python. swaroopch. com
 Programação em Python. Ernesto Costa, FCA, 2015.

Teaching and learning methods

This course is composed by theoretical-practical lectures, divided into two kinds of periods: expository periods during which the theoretical contents are presented and explained based on practical examples; implementation periods during which the students put in practice the knowledge acquired in the expository periods.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary)

 Practical Work 50%
 Final Written Exam 50% (the minimum grade of 5 points is required)

 Alternative 2 (Regular, Student Worker) (Special)

 Final Written Exam 100%

Language of instruction

- 1. Portuguese 2. English

Electronic validation			
Paulo Duarte Ferreira Gouveia	Tiago Miguel Ferreira Guimaraes Pedrosa	Luísa Maria Garcia Jorge	José Carlos Rufino Amaro
04-10-2023	07-10-2023	25-10-2023	31-10-2023