

Course Unit	Computer Graphics	Field of study Computer Science				
Bachelor in	elor in Informatics Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9119-706-2202-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC -	E · OT · O · Fieldwork; S · Seminar; E · Placement; OT · Tutorial; O · Other

Name(s) of lecturer(s)

Leonel Domingues Deusdado, Jose Paulo Machado Da Costa

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Understand the concepts, techniques, technologies and architectures for Computer Graphics (CG). Understand the technologies for the synthesis of two-dimensional images and three-dimensional scenes with medium and high realism. 2

- Identify the bases of computer graphics and its main points, its functions and how they articulate.
 Learn, develop and animate computer-aided design in 2D and 3D.
 Know how to use specific software for modeling and animation.
 Build and evaluate solutions and architectures for 2D and 3D computer graphics applications, achieve a high level of quality and / or performance in accordance with the requirements of the problem.

Prerequisites

Before the course unit the learner is expected to be able to: 1. Understand the logic of Algorithms and Data Structures 2. Understand the C Programming Language

Course contents

Production of 3D Graphics - History and Concepts, Geometric Transformations, Parametric Curves, Lighting, Textures, Optimization Techniques, Performance Analysis, Practical Applications of Computer Graphics.

Course contents (extended version)

- 1. Production of 3D Graphics: Brief historical overview
- 3D models: geometry and materials Image manipulation 2. Geometric Transformations:
- - Pipeline graph of geometric transformations
 Placement of models in the scene: translation, rotation and scale
- The camera, positioning and orientation
 Projections: perspective and orthographic
 3. Parametric Curves:
- Non-Planar objects
 Casteljau, Bezier and Splines algorithms
- - Lighting Components
 Normals
 - Material Definition
 - Shadows: Shadow mapping and Shadow Volumes
- 5. Textures: - Texture Coordinates

 - Geometric Transformations Sampling
- Sampling
 Sampling
 Sometry: view frustum culling, occlusion culling, levels of detail
 Spacial Partition: Octrees, BSPs, Portals
 Primitives: sending command sets, primitive types
 Performance Analysis:
 Graphic Pipeline
 Identification of bettlepedice

- Identification of bottlenecks
- Profiling
 Practical Applications of Computer Graphics:
 OpenGL in C++

 - Blender
 - Virtual Reality : Unity3D VR

Recommended reading

- Computação Gráfica: Geração de Imagens (volume1); Eduardo Azevedo, Aura Conci; Elsevier, 2003-2008
 Computer Graphics : Principles and Practice; James D. Foley, . . . [et al.], Reading : Addison-Wesley Publishing Company , 1997
 OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4. 3; Dave Shreiner, John M. Kessenich; Graham Sellers, Bill Licea-Kane; Person Education Inc, 2009
- Manuali Tutoriais Web Blender; https: //www. blender. org/support/tutorials/ 2023/2024
 Sebenta da Disciplina 2023/2024; Leonel Deusdado

Teaching and learning methods

Mainly affirmative/interrogative (open variant) method in the theoretical lessons. Interrogative and experimental methods in practical lessons(60 hours). Out of classes (100 hours): individual and group study of the lesson subjects, reading of the bibliography, resolution of practical assignments.

This

Assessment methods

- Final Exam 50% ((Minimum grade 7 Values) (Regular, Student Worker) (Final, Supplementary, Special)
 Practical Works in Classroom 50% (Regular, Student Worker) (Final, Supplementary)
 Practical Works 50% (Regular, Student Worker) (Special)

Language of instruction

1. Portuguese 2. English

Electronic validation

_					
		Tiago Miguel Ferreira Guimaraes Pedrosa	Luís Manuel Alves	José Carlos Rufino Amaro	
Γ	14-02-2024	14-03-2024	18-03-2024	24-03-2024	