

Course Unit	Computer Graphics			Field of study	Computer Science	
Bachelor in	Informatics Engineering			School	School of Technology and Management	
Academic Year	2022/2023	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9119-706-2202-00-22	
Workload (hours)	162	Contact hours	1 00 IF		C - S	E - OT - O -
Name(s) of lecturer(s	s) Leonel Domi	ngues Deusdado				

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- . Understand the concepts, techniques, technologies and architectures for Computer Graphics (CG).

 Understand the technologies for the synthesis of two-dimensional images and three-dimensional scenes with medium and high realism.

- Identify the bases of computer graphics and its main points, its functions and how they articulate.
 Learn, develop and animate computer-aided design in 2D and 3D.
 Know how to use specific software for modeling and animation.
 Build and evaluate solutions and architectures for 2D and 3D computer graphics applications, achieve a high level of quality and / or performance in accordance with the requirements of the problem.

Prerequisites

Before the course unit the learner is expected to be able to:
1. Understand the logic of Algorithms and Data Structures
2. Understand the C Programming Language

Course contents

Production of 3D Graphics - History and Concepts, Geometric Transformations, Parametric Curves, Lighting, Textures, Optimization Techniques, Performance Analysis, Practical Applications of Computer Graphics.

Course contents (extended version)

- 1. Production of 3D Graphics:
 - Brief historical overview
- 3D models: geometry and materials
 Image manipulation
 Geometric Transformations:

- Pipelline graph of geometric transformations
 Placement of models in the scene: translation, rotation and scale
- The camera, positioning and orientation
 Projections: perspective and orthographic
 Parametric Curves:
- Non-Planar objects
 Casteljau, Bezier and Splines algorithms Casterjau, bezier and op....
 Lighting:
 Global Lighting vs Local Lighting
 Algorithms of Global Lighting
 Algorithms of Local Lighting
 Components

 - Lighting Components
 Normals

 - Material Definition
 - Shadows: Shadow mapping and Shadow Volumes
- 5. Textures:
 - Texture Coordinates
 - Geometric Transformations Sampling
- Sampling
 Sampling
 Committee of Commit
- - Identification of bottlenecks
- Profiling
 Practical Applications of Computer Graphics:
 OpenGL in C++

 - Blender
 - Virtual Reality : Unity3D VR

Recommended reading

- Computação Gráfica: Geração de Imagens (volume1); Eduardo Azevedo, Aura Conci; Elsevier, 2003-2008
 Computer Graphics: Principles and Practice; James D. Foley, . . . [et al.], Reading: Addison-Wesley Publishing Company, 1997
 OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4. 3; Dave Shreiner, John M. Kessenich; Graham Sellers, Bill Licea-Kane; Person Education Inc, 2009
- 4. Manuais e Tutoriais Web Blender; https://www.blender.org/support/tutorials/ 2022 5. Sebenta da Disciplina 2022-2023; Leonel Deusdado

Teaching and learning methods

Mainly affirmative/interrogative (open variant) method in the theoretical lessons. Interrogative and experimental methods in practical lessons(60 hours). Out of classes (100 hours): individual and group study of the lesson subjects, reading of the bibliography, resolution of practical assignments.

Assessment methods

- 1. Final Exam 40% ((Minimum grade 7 Values) (Regular, Student Worker) (Final, Supplementary, Special) 2. Pratical Works 60% (Regular, Student Worker) (Final, Supplementary, Special)

Language of instruction

- 1. Portuguese 2. English

Electronic validation			
Leonel Domingues Deusdado	José Luís Padrão Exposto	Luísa Maria Garcia Jorge	José Carlos Rufino Amaro
02-03-2023	17-03-2023	23-03-2023	25-03-2023