

Course Unit	Operating Systems			Field of study	Computer Engineering		
Bachelor in	Informatics Engineering			School	School of Technology and Management		
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits 6.0	
Туре	Semestral	Semester	1	Code	9119-706-2105-00-23		
Workload (hours)	162	Contact hours	T 30 TP		C - S solving, project or laboratory; TC	E OT O - Totorial; O - Other	

Name(s) of lecturer(s) ARNALDO ANTÓNIO PINTO PEREIRA, José Carlos Rufino Amaro

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

1. know the fundamental principles of the architecture and operation of modern operating systems

2. master a set of basic concepts and techniques on system-level programming, using Linux as reference environment

Prerequisites

Before the course unit the learner is expected to be able to: 1. to program in the C language 2. master fundamental concepts on Computer Architectures

Course contents

Introductory Concepts, Operating System Structures, Processes, CPU Scheduling, Process Synchronization, Main Memory, Virtual Memory, File-System. System Level Programming in Linux.

Course contents (extended version)

- Introductory Concepts
 Operating System Concept
 Computing System Operation
 Hardware Protection
 Specialised Systems and Environments
 Operating System Structures
 System Services
- - User Interfaces

 - Oser Interlaces
 System Calls
 System Programs
 System Design and Implementation
 Operating System Structure
 System Generation

- Processes
 Process Concept
 Process Scheduling
 Operations on Processes
- Operations on Processes
 Interprocess Communication
 Client-Server Communication
 CPU Scheduling
 Basic Concepts
 Scheduling Criteria
 Scheduling Algorithms
 Scheduling in Multiprocessor Systems
 Scheduling in Real-Time Systems
 Scheduling in Real-Time Systems
 Process Synchronization
 Basic Concepts
 The Critical-Section Problem
 Peterson's Solution
 Synchronization Hardware

- Synchronization Hardware
 Locks and Semaphores
 Classical Problems of Synchronization
 Main Memory
- - Basic ConceptsContiguous Allocation

 - Paging
 Structure of the Page Table
- Structure of the results Swapping
 7. Virtual Memory
 Basic Concepts
 Demand Paging

 - Copy-on-Write Page Replacement
 - Allocation of Frames
- Thrashing
- 8. File-System
 File-System Architecture

 - File-System Implementation Allocation Methods Free-Space Management Efficiency and Performance
- Recovery
 System Level Programming in Linux
 Process Management
 Shared Memory

 - SemaphoresFiles and Pipes

This document is valid only if stamped in all pages

Recommended reading

- "Operating System Concepts, 10th Ed.", Silberschatz, Galvin & Gagne, John Wiley & Sons, 2018
 "Fundamentos de Sistemas Operacionais, 9a Ed.", Silberschatz, Galvin & Gagne, LTC, 2015
 "Programação de Sistemas em Linux", José Rufino, ESTiG/IPB, 2022
 "The Linux Programming Interface", Michael Kerrisk, No Starch Press, 2010
 "Linux System Programming, 2nd Ed.", Robert Love, O'Reilly, 2013

Teaching and learning methods

The unit will be primarily taught using lectures that alternate the exposition of theoretical concepts with the resolution of exercises, complemented by practical works to be solved outside classes. All documentation (slides, exercises, solutions, assignments) will be provided through e-learning facilities. Additional support in the form of tutoring is provided.

Assessment methods

- 1. Alternative 1 (Regular, Student Worker) (Final)
 Intermediate Written Test 17% (Theoretical Part T1: Introductory Concepts, Operating System Structures, Processes)
 Intermediate Written Test 17% (Practical Part P1: Process Management)
 Intermediate Written Test 17% (Theoretical Part T2: CPU Scheduling, Main Memory, Virtual Memory)
 Intermediate Written Test 17% (Practical Part P2: Shared Memory and Semaphores)
 Inial Written Exam 16% (Theoretical Part T3: Process Synchronization, File-Systems)
 Final Written Exam 16% (Practical Part P3: Files and Pipes)
 Practical Work 0% (2 optional projects, used to replace the 2 worst parts)

 Alternative 2 (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 100% (Exam divided in the 6 parts of Alternative 1)
 Practical Work 0% (Projects used as in Alternative 1 and can be solved for the 1st time in the Special epochs)

Language of instruction

- 1. Portuguese 2. English

actro	 1	1 -1 - 4	

ARNALDO ANTÓNIO PINTO PEREIRA, José Carlos Rufino Amaro	Tiago Miguel Ferreira Guimaraes Pedrosa	Luísa Maria Garcia Jorge	Nuno Adriano Baptista Ribeiro
02-10-2023	25-10-2023	25-10-2023	06-11-2023