

Course Unit	Operating Systems			Field of study	Computer Engineering		
Bachelor in	Informatics Engineering			School	School of Technology and Management		
Academic Year	2022/2023	Year of study	2	Level	1-2	ECTS credits	6.0
Туре	Semestral	Semester	1	Code	9119-706-2105-00-22		
Workload (hours)	162	Contact hours		- PL 30 T	C - S -	E - OT	- O -

Name(s) of lecturer(s)

José Carlos Rufino Amaro, Jose Luis Miranda Goncalves, Rui Alexandre Coelho Alves

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. know the fundamental principles of the architecture and operation of modern operating systems 2. master a set of basic concepts and techniques on system-level programming, using Linux as reference environment

Prerequisites

Before the course unit the learner is expected to be able to: 1. to program in the C language 2. master fundamental concepts on Computer Architectures

Course contents

Introductory Concepts, Operating System Structures, Processes, CPU Scheduling, Process Synchronization, Main Memory, Virtual Memory, File-System. System Level Programming in Linux.

Course contents (extended version)

- Introductory Concepts

 Operating System Concept
 Computing System Operation
 Hardware Protection
 Specialised Systems and Environments

 Operating System Structures

 System Services
 Unstrument Interface

 - User Interfaces

 - System Calls System Programs System Design and Implementation Operating System Structure System Generation

This document is valid only if stamped in all pages.

- Brocesses
 Process Concept
 Process Scheduling
 Operations on Processes
- Operations on Processes
 Interprocess Communication
 Client-Server Communication
 CPU Scheduling
 Basic Concepts
 Scheduling Criteria
 Scheduling Algorithms
 Scheduling in Multiprocessor Systems
 Scheduling in Real-Time Systems
 Scheduling in Real-Time Systems
 Process Synchronization
 Basic Concepts
 The Critical-Section Problem
 Peterson's Solution
 Synchronization Hardware
- Peterson's Solution
 Synchronization Hardware
 Locks and Semaphores
 Classical Problems of Synchronization
 Main Memory
- - Basic Concepts
 Contiguous Allocation
- Paging
 Structure of the Page Table

- Structure of the r
 Swapping
 Virtual Memory
 Basic Concepts
 Demand Paging

 - Copy-on-Write Page Replacement
 - Allocation of Frames
- Thrashing
- 8. File-System File-System Architecture

 - File-System Implementation
 Allocation Methods
 Free-Space Management
 Efficiency and Performance
- System Level Programming in Linux
 Process Management
 Shared Memory

 - Semaphores Files and Pipes

Recommended reading

- "Operating System Concepts, 10th Ed. ", Silberschatz, Galvin & Gagne, John Wiley & Sons, 2018
 "Fundamentos de Sistemas Operacionais, 9a Ed. ", Silberschatz, Galvin & Gagne, LTC, 2015
 "Programação de Sistemas em Linux", José Rufino, ESTiG/IPB, 2020
 "The Linux Programming Interface", Michael Kerrisk, No Starch Press, 2010
 "Linux System Programming, 2nd Ed. ", Robert Love, O'Reilly, 2013

Teaching and learning methods

The unit will be primarily taught using lectures that alternate the exposition of theoretical concepts with the resolution of exercises, complemented by practical works to be solved outside classes. All documentation (slides, exercises, solutions, assignments) will be provided through e-learning facilities. Additional support in the form of tutoring is provided.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Intermediate Written Test 12% (Theoretical Part T1: Introductory Concepts, Operating System Structures, Processes.)
 Intermediate Written Test 12% (Practical Part P1: Process Management.)
 Intermediate Written Test 12% (Practical Part P2: CPU Scheduling, Process Synchronization.)
 Intermediate Written Test 12% (Practical Part P2: Shared Memory and Semaphores.)
 Final Written Exam 11% (Practical Part T3: Main Memory, Virtual Memory, File-Systems.)
 Final Written Exam 11% (Practical Part P3: Files and Pipes.)
 Practical Work 30% (Optional. If not done, the 30% are equally divided by the 6 parts.)

 Alternative 2 (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam 70% (Exam divided in the 6 parts of Alternative 1.)
 Practical Work 30% (Optional. If not done, the 30% are equally divided by the 6 parts.)

Language of instruction

Portuguese English

_	Electronic validation				
	José Carlos Rufino Amaro	José Luís Padrão Exposto	Luísa Maria Garcia Jorge	Paulo Alexandre Vara Alves	
	31-10-2022	02-11-2022	02-11-2022	03-11-2022	