

Course Unit	Object Oriented Programming			Field of study	Computer Science	
Bachelor in	Informatics Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9119-706-1204-00-23	
Workload (hours)	162	Contact hours			C - S -	Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Othe

Name(s) of lecturer(s)

Paulo Duarte Ferreira Gouveia, Carlos Eduardo Castro Correia, Jose Paulo Machado Da Costa, Nelson Alexandre Perdigao Figueiredo, Sergio Paulo Perdigao do Vale

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Identify the guiding principles of object oriented programming 2. Create UML class diagrams and implement solutions based on problems descriptions 3. Define classes, objects, attributes and method using C++ language, identifying and defining the needed constructors to the correct instance initialization 4. Recognize the need to implement copy constructors, assignment operators and destructors to handle dynamic class attributes 5. Distinguish aggregation from simple associations and conveniently implement them in C++, using appropriate data structures for dynamic collection of entities in 1-n relationeshing. Identify and implement inheritance between classes and establish class hierarchies
- 6
- Understand the concept of polymorphism and implement it by means of the definition and application of virtual functions
 Understand the concept of abstract class and pure virtual functions as a mean to impose operations in the derived classes

Prerequisites

Before the course unit the learner is expected to be able to:

- 1. Elaborate logical reasoning for the resolution of problems 2. Create programs using the procedural paradigm

Course contents

Object Oriented Programming definition. Principles of Object Oriented Programming. Concepts of object oriented modeling. Introduction to the C++ language. Class definition in C++. Implementation of associations. Class and functions templates. C++ Standard libraries. Implementation of inheritance and class hierarchies. Dynamic memory management inside a class. Hybrid collections. Input and output and file handling.

Course contents (extended version)

- 1. Object Oriented Programming definition
 - Motivation

document is valid only if stamped in all pages

This

- Basic concepts
 2. Principles of Object Oriented Programming
 - Encapsulation
 - Inheritance
- Polymorphism
 Concepts of object oriented modeling
 UML class diagrams

 - UML communication diagrams
- Associations between classes: simple, aggregation and composition
 Inheritance: overriding and adding new features, abstract classes, multiple inheritance
 Introduction to the C++ language
 MS Visual Studio

- Declarations
- Constants
- Data types
 Expressions and operators
- Functions 5. Class definition in C++
- Attributes
 Constructors. Construtors categories
- Methods
- 6. Basic features of C++
 - Object arrays and object pointers. Self reference
 Constant members
- Operator overloading
 Implementation of simple associations and aggregation
- 8. Function and class templates
 9. C++ Standard libraries
- String and set classes
 Collection class template

- Converting to the second second

 - N-N associations
 Associative classes
- 11. References Reference definition
- Parameter passage and return
 12. Implementation of inheritance and class hierarchies

 - Method addition and overriding
 Constructors and inheritance. Initializer list
 - Types of member access protection
 Upcast and downcast
- Polymorphism and virtual functions
 Abstract classes and pure virtual functions
- 13. Dynamic memory management inside a class Copy constructor
 - Destructor

Course contents (extended version)

- Assignment operator
 14. Aggregation with pointers
 15. Implementation of hybrid collection
 16. Conversion operators. Static members
 17. Friend declarations
 18. Input and output and file handling

Recommended reading

- The C++ Programming Language (4th Edition). Bjarne Stroustrup, Addison-Wesley, 2013
 C++ Programming: An Object-Oriented Approach. B. Behrouz A. Forouzan and Richard F. Gilberg, McGraw-Hill Education, 2020
 Fundamentals of C++ Programming. Richard L. Halterman, School of Comp. South. Adv. University US, 2018
 C++: Guia Moderno de Programação. Henrique Loureiro, FCA Editora de Informática, 2019
 Modelação de Dados em UML uma abordagem por problemas. Borges, T. Dias e J. Cunha, FCA Editora de Informática, 2015

Teaching and learning methods

Lecture classes of theoretical concepts followed by practical discussion of model examples. Concept application through small problem solving. Practical experience is developed with the resolution of a larger problem. Execution of a final project assignment.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Practical Work 50% (Modeling and implementation in C++ of a solution in the OOP paradigm)
 Final Written Exam 50% (Component with a minimum score of 7 out of 20.)

 Alternative 2 (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam 100%

Language of instruction

1. Portuguese 2. English

Electronic validation			
Paulo Duarte Ferreira Gouveia	Tiago Miguel Ferreira Guimaraes Pedrosa	Luís Manuel Alves	José Carlos Rufino Amaro
08-03-2024	14-03-2024	15-03-2024	24-03-2024