

Course Unit	urse Unit Object Oriented Programming			Field of study	Computer Science		
Bachelor in	Informatics Engineering			School	School of Technology and Management		
Academic Year	2022/2023	Year of study	1	Level	1-1	ECTS credits	6.0
Туре	Semestral	Semester	2	Code	9119-706-1204-00-22		
Workload (hours)	162	Contact hours		60 PL - T	C - S - solving, project or laboratory; TC	E - OT Fieldwork; S - Seminar; E - Place	- O - ement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Paulo Duarte Ferreira Gouveia, Jose Paulo Machado Da Costa, Nelson Alexandre Perdigao Figueiredo, Sergio Paulo Perdigao do Vale

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
- З
- Identify the guiding principles of object oriented programming
 Create UML class diagrams and implement solutions based on problems descriptions
 Define classes, objects, attributes and method using C++ language, identifying and defining the needed constructors to the correct instance initialization
 Recognize the need to implement copy constructors, assignment operators and destructors to handle dynamic class attributes
 Distinguish aggregation from simple associations and conveniently implement them in C++, using appropriate data structures for dynamic collection of entities in 1n relationships 5
- 6. Identify and implement inheritance between classes and establish class hierarchies
 7. Understand the concept of polymorphism and implement it by means of the definition and application of virtual functions
 8. Understand the concept of abstract class and pure virtual functions as a mean to impose operations in the derived classes

Prerequisites

Before the course unit the learner is expected to be able to: 1. Elaborate logical reasoning for the resolution of problems 2. Create programs using the procedural paradigm

Course contents

Object Oriented Programming definition. Principles of Object Oriented Programming. Concepts of object oriented modeling. Introduction to the C++ language. Class definition in C++. Implementation of associations. Class and functions templates. C++ Standard libraries. Implementation of inheritance and class hierarchies. Dynamic memory management inside a class. Hybrid collections. Input and output and file handling.

Course contents (extended version)

1. Object Oriented Programming definition

- Motivation Basic concepts
- 2. Principles of Object Oriented Programming
 - Encapsulation Inheritance

 - Polymorphism
- - MS Visual Studio
 Declarations
 - Constants

 - Data types
 Expressions and operators
- Functions
- 5. Class definition in C++ Attributes
 - Constructors. Construtors categories
 - Methods
- 6. Basic features of C++
 Object arrays and object pointers. Self reference
 - Constant members
 Operator overloading
- Implementation of simple associations and aggregation
 Function and class templates

- 9. C++ Standard libraries String and set classes Collection class template 10. Implementation of associations

- Associations and collections
 Copy collections and reference collections
 I-N associations
 N-N associations
- Associative classes 11. References

- References

 Reference definition
 Parameter passage and return

 Implementation of inheritance and class hierarchies

 Method addition and overriding
 Constructors and inheritance. Initializer list
 Types of member access protection
 Upcast and downcast
 Polymorphism and virtual functions
 Abstract classes and nuc wirtual functions
- Abstract classes and pure virtual functions
 13. Dynamic memory management inside a class

 - Copy constructor
 Destructor
 - Assignment operator

Course contents (extended version)

- Aggregation with pointers
 Implementation of hybrid collection
 Conversion operators. Static members
 Friend declarations
 Instant and the set of the baseline
- 18. Input and output and file handling

Recommended reading

- The C++ Programming Language (4th Edition). Bjarne Stroustrup, Addison-Wesley, 2013
 C++ Programming: An Object-Oriented Approach. B. Behrouz A. Forouzan and Richard F. Gilberg, McGraw-Hill Education, 2020
 Fundamentals of C++ Programming. Richard L. Halterman, School of Comp. South. Adv. University US, 2018
 C++: Guia Moderno de Programação. Henrique Loureiro, FCA Editora de Informática, 2019
 Modelação de Dados em UML uma abordagem por problemas. Borges, T. Dias e J. Cunha, FCA Editora de Informática, 2015

Teaching and learning methods

Lecture classes of theoretical concepts followed by practical discussion of model examples. Concept application through small problem solving. Practical experience is developed with the resolution of a larger problem. Execution of a final project assignment.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Practical Work 50% (Modeling and implementation in C++ of a solution in the OOP paradigm)
 Final Written Exam 50% (Component with a minimum score of 7 out of 20.)

 Alternative 2 (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam 100%

Language of instruction

Portuguese
 English

Electronic validation				
Paulo Duarte Ferreira Gouveia	José Luís Padrão Exposto	Luísa Maria Garcia Jorge	José Carlos Rufino Amaro	
08-03-2023	17-03-2023	27-03-2023	27-03-2023	