

	Mathematics	
Bachelor in Informatics Engineering School School of Technology and Management	School of Technology and Management	
Academic Year 2024/2025 Year of study 1 Level 1-1 ECTS credits 6.0		
Type Semestral Semester 2 Code 9119-706-1202-00-24		
Workload (hours) 162 Contact hours T - TP 60 PL - TC - S - E - OT - T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT	O Tutorial; O - Other	
Name(s) of lecturer(s) Francisco, José Rasílio Pimentel Pires Peito, José Mário Escudeiro de Aguiar, Ricardo Alexandre Saraiya Gomes, Vania Cristi		

Learning outcomes and competences

Rodrigues

- At the end of the course unit the learner is expected to be able to:

 1. Apply and to interpret the most common ways of representing and synthesize the information in a dataset;

 2. Understand the basic concepts related to random variables and perform simple calculations based on them;

 3. Know and to manipulate, at a basic level, the most common random variables and use them to model simple situations;

 4. Understand the probability concept and its axioms and compute simple probability using the basic probability and combinatorics laws;

 5. Compute point and interval estimates for the most common population parameters;

 6. Understand and to apply the hypothesis test methodology on the most common population parameters.

Prerequisites

Before the course unit the learner is expected to be able to:

1. Manipulate basic mathematical concepts

- 2. Use a spreadsheet

Course contents

Introduction. Descriptive Statistics. Basic Probability Theory. Random Variables and Probability Distributions. Joint Probability Distributions. Characterization of Some Discrete Distributions. Characterization of Some Continuous Distributions. Random Sampling and Sampling Distributions. Point Estimation. Interval Estimation. Hypothesis Tests.

Course contents (extended version)

- 1 Introduction

- - Data classification
 Qualitative and quantitative data
 Univariate samples characterization
 Location statistics (average, median and mode) e dispersion (variance)
 Skew and Kurtosis coefficients
 Bivariate samples characterization
 Calculation of a linear relation coefficients using least squares
 Correlation and determination coefficients

- Correlation and determination coefficients
 Basic Probability Theory
 Random experiments, sampling spaces and events
 Combinatorics
 The probability concept

 - Conditional probability
 Independent events
- Bayes' theorem

 4. Random Variables and Probability Distributions
- 4. Random Variables and Probability Distributions

 Definition of random variable

 Discrete variables: probability function and cumulative probability function

 Continuous variables: probability density function and cumulative density function

 Distribution parameters

 Variable transformations: linear and non linear transformations

 5. Joint Probability Distributions

 Definition of joint distributions

 Conditional distributions

 Conditional distributions

 - Conditional distributions
 Independence
 - Covariance and correlation
 Variable combinations
- Calculation of a combination expected value and variance: linear and non linear combinations 6. Characterization of Some Discrete Distributions
- - Binomial distribution
 Negative Binomial distribution
- Hypergeometric distribution
 Relations between the Binomial and the Hypergeometric distributions
- Poisson distribution
 Relations between the Poisson and the Binomial and Hypergeometric distributions
- Characterization of Some Continuous Distributions

 Uniform distribution

 - Exponential distribution
 Relations between the Poisson and Exponential distributions

 - Normal distributionStandard Normal distribution
- Standard Normal distribution
 Linear combination of independent Normal variables
 Relations between the Normal and Binomial distributions
 Chi-squared, Student's t and F distributions
 8. Random Sampling and Sampling Distributions
 Distribution of sample mean
 Expected value and variance for sample mean
 Sample mean distribution shape for Normal populations

Course contents (extended version)

- Central limit theorem
- Implications on sampling distributions
 Random sample generations using Monte Carlo method
 Generation of random U(0, 1) samples
- Generation of random samples for discrete and for continuous populations
- 9. Point Estimation
 - Estimators and estimates
 - Desirable estimates

 Desirable estimator properties: unbiased, efficient and consistent

 Estimation methods: maximum likelihood and least squares
- Estimator selection
- 10. Interval Estimation
 - Confidence interval concept

 - Confidence interval concept
 Confidence interval specification
 Confidence intervals for the continuous populations mean
 Confidence intervals for the Binomial proportion: small and large samples
 Confidence intervals for a Normal population variance
 Confidence intervals for the mean difference between two continuous populations
 Confidence intervals for the proportion difference with large samples
 Confidence intervals for the variance ratio of Normal populations
- Conflictive Intervals for the Valia
 Sample size determination

 11. Hypothesis Tests
 Basic hypothesis test procedure
 Hypothesis definition
 Test statistic characterization
 Decision rule definition

 - Type I error and significance
 - Calculation of test statistics and decision making

 - Type II error and statistical power
 Relations between hypothesis tests and confidence intervals
 Reference to the most common tests

Recommended reading

- 1. Guimarães, Rui C. , Sarsfield Cabral, José A. (2010). Estatística (2ª edição). Verlag Dashöfer Portugal. ISBN: 9789896421083 (texto principal)
 2. Pedrosa, António C. , Gama, Sílvio Marques A. (2018). Introdução Computacional à Probabilidade e Estatística (3ª edição). Porto Editora. ISBN: 9789720019905
 3. Wonnacott, Ronald J. , Wonnacott, Thomas H. (1990). Introductory Statistics for Business and Economics (4th edition). John Wiley and Sons Ltd. ISBN: 9780471615170
- Anderson, David R., Sweeney, Dennis J., Williams, Thomas A. (2015). Modern Business Statistics with Microsoft Excel (6th edition). Cengage Learning. ISBN: 9781285867045

Teaching and learning methods

Contents will be covered with student attendance, in theoretical-practical classes, as well as the analysis and solution of exercises. Non-contact hours should be spent reviewing the lectured contents and solving practical exercises from the worksheets. Tutorial sessions might be held in non-contact hours, if necessary, individually or in groups.

Assessment methods

- Final Exam 100% (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%

 English Class 1 (Regular, Student Worker) (Final)

 Intermediate Written Test 50%
 Final Written Exam 50%

 English Class 2 (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%

Language of instruction

- Portuguese
 English

Electronic validation

Francisco José Basílio Pimentel Pires Peito, José Mário Escudeiro de Aguiar	Carla Alexandra Soares Geraldes	Luís Manuel Alves	José Carlos Rufino Amaro
07-03-2025	07-03-2025	10-03-2025	19-03-2025