

Course Unit	Computer Architecture			Field of study	Computer Engineering		
Bachelor in	Informatics Engineering			School	School of Technology and Management		
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits 6.0	
Туре	Semestral	Semester	2	Code	9119-706-1201-00-23		
Workload (hours)	162	Contact hours	T - Lectures; TP - Lectures a		C - S	E - OT - O Fieldwork; S - Seminar, E - Placement, OT - Tutorial; O - Other	
Name(s) of lecturer(s) José Carlos Rufino Amaro, ARNALDO ANTÓNIO PINTO PEREIRA, Gilberto Sousa Ferraz							

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to.

 1. understand the role of each computing system component

 2. know the operating mechanism of a processor and its interaction with the other system components

 3. understand the effect produced by high-level programming languages code fragments at the level of computing systems hardware

 4. predict the impact that a specific hardware upgrade would produce in the entire system performance

 5. size and evaluate computing systems

Prerequisites

- Before the course unit the learner is expected to be able to:

 1. know the role of digital logic in the context of computing systems

 2. understand the operation and the goal of small programmes written in C language

Course contents

Introduction to computer architecture and organization. Data representation. MARIE simplified architecture. Instruction set architectures. Memory. Input/Output and storage systems. Performance measurement and optimization. Alternative architectures.

Course contents (extended version)

- Introduction to computer architecture and organization
 SI and IEC units of measurement

 - main components of a computer
 - standards organizationshistorical evolution

 - the computer level hierarchy
 the von Neumann model
- 2. Data representation

 - positional numbering systems
 conversion between different number bases
 signed integer representation
 floating-point representation
 character codes
 error detection and correction

- error detection and correction
 3. Study of a simulated architecture
 basic components of a CPU
 basic organization of the Main Memory
 MARIE CPU structure and organization
 MARIE instruction set architecture
 MARIE instruction processing
 MARIE assembly programs
- MARIE assembly programs
 MARIE assembly programs
 MARIE instructions decoding
 Instruction set architectures
 instruction formats

- Instruction tornats
 instruction types
 addressing
 instruction-level pipelining
 CISC vs RISC
- 5. Memory types of memory the memory hierarchy
 main memory
- cache memory
 virtual memory
 6. Input/Output and storage systems
 buses

 - I/O subsystemI/O architectures
 - storage technologies RAID schemes
- 7. Performance measurement and optimization mathematical metrics
 - benchmarkingCPU performance optimization
- Amdahl's law8. Alternative architectures
 - Flynn's taxonomy parallel systems
 - other systems

Recommended reading

- "The essentials of computer organization and architecture, 5th Ed."; Linda Null, Julia Lobur; Jones and Bartlett Publishers; 2018
 "Princípios Básicos de Arquitetura e Organização de Computadores, 2ª Edição"; Linda Null, Julia Lobur; Bookman; 2010
 "Arquitectura de Computadores, 5ª Edição"; José Delgado, Carlos Ribeiro; FCA; 2014

This document is valid only if stamped in all pages.

Recommended reading

- 4. "Computer Organization and Design: The Hardware/Software Interface, 5th Revised Ed. "; D. A. Patterson, J. L. Hennessy; Morgan Kaufman; 2013 5. "Computer Architecture: A Quantitative Approach, 6th Ed. "; J. L. Hennessy, D. A. Patterson; Morgan Kaufman; 2017

Teaching and learning methods

The subject is taught by interleaving the exposition of theoretical concepts with the resolution of exercises. All documentation (slides, exercises, solutions) is provided through the IPB e-learning platform.

Assessment methods

- 1. Alternative 1 (Regular, Student Worker) (Final)
 Intermediate Written Test 40% (first intermediate test (part P1))
 Intermediate Written Test 40% (second intermediate test (part P2))
 Final Written Exam 20% (first oficial exam (part P3))
 2. Alternative 2 (Regular, Student Worker) (Supplementary)
 Final Written Exam 100% (second oficial exam (structured in parts P1, P2 and P3; allows evaluation of any part combination))
 3. Alternative 3 (Regular, Student Worker) (Special)
 Final Written Exam 100% (exam with the same structure of the 2nd oficial exam and reuse of the previous grades of the 3 parts)

Language of instruction

- Portuguese
 English

lectro		

José Carlos Rufino Amaro	Tiago Miguel Ferreira Guimaraes Pedrosa	Luís Manuel Alves	Nuno Adriano Baptista Ribeiro
23-02-2024	14-03-2024	16-03-2024	17-04-2024