

Course Unit	Digital Electronics			Field of study	Computer Engineering			
Bachelor in	Informatics Engineering			School	School of Technology and Management			
Academic Year	2022/2023	Year of study	1	Level	1-1	ECTS credits 6.0		
Туре	Semestral	Semester	1	Code	9119-706-1105-00-22			
Workload (hours)	162	Contact hours	T - TP	60 PL - T	c - s -	E - OT - O -		
T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other								
) (0 .//! D ./	5				. 5: "		

Name(s) of lecturer(s) Getúlio Paulo Peixoto Igrejas, Adriano Manuel Alves Ferreira, Andre Chaves Mendes, Luis Fernando Piardi

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:

 1. Simplify logical functions using both analytical and graphical methods.

 2. Know the principal electrical characteristics of the TTL and CMOS familly.

- Nesign application specific combinatory digital circuits.
 Design application specific combinatory digital circuits.
 Design counters for non-monotonic and non-consecutive sequences.
 Design MIMO sequential machines.
 Understand the structure and operation of electronic memories and digital programming devices.
 Be able to write simple programs for the ARDUINO development platform.

Prerequisites

Before the course unit the learner is expected to be able to: Not appliable.

Course contents

Number Systems and Binary Codes. Logic Gates and Boolean Algebra. Logical Operations using electrical signals. Combinatory Integrated Circuits. Sequential Logic Circuits. Development of programs for the ARDUINO platform.

Course contents (extended version)

- Number Systems and Binary Codes
 Conversion between the binary, octal and hexadecimal number system
 Signed Number Representation
 Arithmetic Operations
 Binary Codes
 Introduction to data transmission
 Logic Gates and Boolean Algebra
 Boolean Variables
 Elementary Logic Operations
 Canonical form of a logical expression
 Other logical operations
- - Other logical operations
 Logical Gates and Logical diagrams
 The NAND and NOR functions as universal modelling operators
- The NAND and NOR functions as universal r
 Theorems and properties of Boole's Algebra
 Logical Expression Simplification
 3. Logical Operations using electrical signals
 Logical Integrated Circuits (IC)
 Logical IC Families
 Switching Dynamics
 4. Combinatory Integrated Circuits
 Coders and decoders
 Multiplayers and Demultipleyers

- Goders and decoders
 Multiplexers and Demultiplexers
 Logical function modellation using multiplexers
- Logical interior modellation using Code converters
 Adders, subtractors and ALU's
 5. Sequential Logic Circuits
 Multivibrators
 Latches and Flip-Flop's
 Counters
 Count
- - Counters Design method
 Registries
- Registres
 Integrated Circuits
 State Machine
 Synchronous Sequential Circuits
 Introduction to microprocessors and microcontrollers
 - ARDUINO platform architecture
 Input/Output ports
 Microcontroller programming
 Flow control instructions

 - Cycle instructions

Recommended reading

- Digital Electronics Tokheim, McGraw Hill, 2007
 VHDL Programming by Example D. Perry, Mc Graw Hill, 2002
 Digital Design: Principles and Practices John F. Wakerly, Prentice Hall, 2005

Teaching and learning methods

Most of the topics will be introduced, by the teacher, in presential classes. The concepts will be further investigated: - On presential sessions where the concepts are introduced and laboratory assignments are developed. - On non-presential time where the topics are further exploited by means of application exercises or group work assignments

This document is valid only if stamped in all pages.

Assessment methods

- Average of the laboratorial and final exams (Regular, Student Worker) (Final, Supplementary, Special)

 Laboratory Work 60%
 Final Written Exam 40% (Mandatory to have a minimum of 7 on the final exam.)

 The grade depends only on the final exam (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%

Language of instruction

- Portuguese
 English

Electronic validation			
Getúlio Paulo Peixoto Igrejas	José Luís Sousa de Magalhaes Lima	Luísa Maria Garcia Jorge	Paulo Alexandre Vara Alves
03-10-2022	16-10-2022	31-10-2022	05-11-2022