

| Unidade Curricular Sistemas Digitais |                        |                   |   | Área Científica | Engenharia de Computadores                            |                                          |
|--------------------------------------|------------------------|-------------------|---|-----------------|-------------------------------------------------------|------------------------------------------|
| Licenciatura em                      | Engenharia Informática |                   |   | Escola          | Escola Superior de Tecnologia e de Gestão de Bragança |                                          |
| Ano Letivo                           | 2022/2023              | Ano Curricular    | 1 | Nível           | 1-1                                                   | Créditos ECTS 6.0                        |
| Tipo                                 | Semestral              | Semestre          | 1 | Código          | 9119-706-1105-00-22                                   |                                          |
| Horas totais de traba                | alho 162               | Horas de Contacto |   |                 | C - S -                                               | E OT O O O O O O O O O O O O O O O O O O |
|                                      |                        |                   |   |                 |                                                       |                                          |

Nome(s) do(s) docente(s) Getúlio Paulo Peixoto Igrejas, Adriano Manuel Alves Ferreira, Andre Chaves Mendes, Luis Fernando Piardi

#### Resultados da aprendizagem e competências

No fim da unidade curricular o aluno deve ser capaz de:

- Simplificar funções lógicas usando métodos analíticos e gráficos. Conhecer as principais características das famílias TTL e CMOS

- Confrece a principais caracteristicas das farillas TTE e CiviOs.
   Desenhar, a partir de especificações e restrições, sistemas digitais combinatórios.
   Desenvolver contadores para sequências não-monotonas e não-consecutivas
   Desenvolver sistemas sequenciais síncronos com entradas e saídas arbitrárias.
   Perceber o modo de funcionamento de memórias e dispositivos lógicos programáveis existentes presentemente.
   Ser capaz de realizar pequenos programas para a plataforma de desenvolvimento ARDUINO.

#### Pré-requisitos

Antes da unidade curricular o aluno deve ser capaz de: Não aplicável.

### Conteúdo da unidade curricular

Sistemas de Numeração e Códigos Binários. Portas Lógicas e Álgebra Booleana. Operações lógicas. Circuitos Integrados Combinatórios. Circuitos Lógicos Sequenciais. Desenvolvimento de programas para a plataforma ARDUINO.

### Conteúdo da unidade curricular (versão detalhada)

- Conteúdo da unidade curricular (versão detalhada)

  1. Sistemas de Numeração e Códigos Binários
   Conversão entre os sistemas de numeração binária, octal e hexadecimal.
   Representação de números com sinal
   Operações Aritméticas entre Números em Binário
   Códigos Binários
   Introdução à Transmissão de Dados
  2. Portas Lógicas e Álgebra Booleana
   Variáveis Booleanas
   Operações Lógicas Elementares
   Forma Canónica de uma Expressão Lógica
   Outras Operações Lógicas
   Portas Lógicas e Diagramas Lógicos
   As portas NAND e NOR como modeladores universais de operações lógicas
   Teoremas e Propriedades da Álgebra de Boole
   Simplificação de Expressões Lógicas
  3. Operações lógicas usando circuitos integrados
   Circuitos Integrados Lógicos
   Famílias Lógicas de Circuitos Integrados
   Dinâmica da Comutação
  4. Circuitos Integrados Combinatórios
   Descodificadores e Codificadores
   Multiplexadores e Demultiplexadores
   Modelação de funções lógicas com multiplexadores
   Conversores de Código
   Unidades Aritméticas
  5. Circuitos Lógicos Sequenciais
   Multivibradores

- Circuitos Lógicos Sequenciais
   Multivibradores
   Latches e Flip-Flop's
   Contadores

  - Desenho de Contadores
    Registos
- Contadores Integrados
   Máquina de Estados
   Circuitos Sequenciais Síncronos
   Introdução aos microprocessadores e microcontroladores
  - Arquitetura da plataforma ARDUINO Portos de Entrada e Saída

  - Programação do microcontrolador
     Instruções para controlo de fluxo
     Instruções de ciclo

### Bibliografia recomendada

- Digital Electronics Tokheim, McGraw Hill, 2007
   VHDL Programming by Example D. Perry, Mc Graw Hill, 2002
   Digital Design: Principles and Practices John F. Wakerly, Prentice Hall, 2005

## Métodos de ensino e de aprendizagem

Os tópicos serão introduzidos em ambiente presencial. O aprofundamento dos conteúdos será desenvolvido: - Em sessões presenciais para apresentação dos conteúdos e desenvolvimento de trabalhos laboratoriais; - Em horário não presencial em que os tópicos serão explorados por meio de exercícios de aplicação ou elaboração de trabalhos de grupo.

# Alternativas de avaliação

- Média dos exames laboratorial e final (Ordinário, Trabalhador) (Final, Recurso, Especial)

   Trabalhos Laboratoriais 60%
   Exame Final Escrito 40% (Obrigatório um mínimo de 7 valores no exame.)

   A nota depende apenas do exame final (Ordinário, Trabalhador) (Final, Recurso, Especial)

   Exame Final Escrito 100%

## Língua em que é ministrada

- Português
   Inglês

| Validação Eletronica          |                                   |                          |                            |
|-------------------------------|-----------------------------------|--------------------------|----------------------------|
| Getúlio Paulo Peixoto Igrejas | José Luís Sousa de Magalhaes Lima | Luísa Maria Garcia Jorge | Paulo Alexandre Vara Alves |
| 03-10-2022                    | 16-10-2022                        | 31-10-2022               | 05-11-2022                 |