

Course Unit	Embedded Systems			Field of study	Electronics and Instrumentation		
Bachelor in	Electrical and Computers Engineering			School	School of Technology and Management		
Academic Year	2022/2023	Year of study	3	Level	1-3	ECTS credits	6.0
Туре	Semestral	Semester	1	Code	9112-742-3104-00-22		
Workload (hours)	162	Contact hours		15 PL 30 T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC -	E - OT Fieldwork; S - Seminar; E - Place	- O - ment; OT - Tutorial; O - Othe

Name(s) of lecturer(s)

José Luís Sousa de Magalhaes Lima, Milena Faria Pinto

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

Analyse simple architectures of popular microprocessors and microcontrollers through block diagrams and practical implementation schematics. Program and handle microcontroller based systems.

2 З

- . Program embedded systems with low and high level languages, such as C and Python. . Develop microcontroller based applications with both components: software and hardware.
- 5. Understand the communication protocols between microcontrollers, peripherals and IoT.

Prerequisites

Before the course unit the learner is expected to be able to: Develop basic projects based on Digital electronics.

Course contents

Basic architecture of an 8 bit microprocessor based system, Low and high level languages programming, Microprocessors and microcontrollers, Memories, interruptions, IO system. 32 bit microcontroller architecture.

Course contents (extended version)

- 1. Embedded system architecture
- Embedded system architecture

 8 bit microcontroller family AVR
 Registers, memory and instructions.

 Programming of a microcontroller based system

 Low level and high level languages
 Microcontrollers and microprocessors. Differences on architectures
 Prototyping platforms
 Sensors and actuators I/O to control processes (examples and practical cases)
 I/O for digital and analog signals

 Interruptions (internal and external)
 Communication protocols

 UART, SPI, I2C, 1-wire.
 Ethernet

- Ethernet
- 5. 32 bits microcontrollers and high level languages. IoT introduction.

Recommended reading

- 1. John P. Hayes, Digital System Design and Microprocessors, McGraw-Hill. Fredrick J. Hill, Gerard R. Peterson, Digital Logic and Microprocessors, John Wiley and Sons.
- 2. Herbert Taub, Circuitos Digitais e Microprocessadores, McGraw-Hill. Douglas V. Hall, Microprocessors and Interfacing: Programming and Hardware, McGraw-Hill International Editions.
- José Manuel Martins Ferreira, Introdução ao Projecto com Sistemas Digitais e Microcontroladores, FEUP edições.

Teaching and learning methods

The unit will be taught using a combination of lectures, self guided learning and practice classes. Practical assignments will be focused on practical use cases and project based learning.

Assessment methods

- Alternative 1 (Regular) (Final, Supplementary, Special)

 Final Written Exam 40% (Theoretical questions)
 Practical Work 60% (Two practical works)

 Alternative 2 (Student Worker) (Final, Supplementary, Special)

 Final Written Exam 40% (Theoretical questions)
 Practical Work 60% (Two practical works)

Language of instruction

Portuguese

Electronic validation				
José Luís Sousa de Magalhaes Lima José Augusto de Almeida Pinh Carvalho		Orlando Manuel de Castro Ferreira Soares	Paulo Alexandre Vara Alves	
11-10-2022	11-10-2022	21-10-2022	24-10-2022	