

Bachelor in Electrical and Computers Engineering School School of Technology and Management Academic Year 2023/2024 Year of study 3 Level 1-3 ECTS credits 6.0 Type Semestral Semester 1 Code 9112-742-3103-00-23 Workload (hours) 162 Contact hours T 30 TP - PL 30 TC - S - E - OT - O - T - Lectures: TP - Lectures and problem-solving, PL - Problem-solving, project or laboratory; TC - Fieldwork: S - Seminar; E - Placement; OT - Tutorial; O - Other	Course Unit	Electrical Power Systems Electrical and Computers Engineering			Field of study	Energy Systems	
Type Semestral Semester 1 Code 9112-742-3103-00-23 Workload (hours) 162 Contact hours T 30 TP - PL 30 TC - S - E - OT - O -	Bachelor in				School	School of Technology and Management	
Workload (hours) 162 Contact hours T 30 TP - PL 30 TC - S - E - OT - O -	Academic Year	2023/2024	Year of study	3	Level	1-3	ECTS credits 6.0
	Туре	Semestral	Semester	1	Code	9112-742-3103-00-23	
1 - Eccurics, 11 - Eccurics and producting-solving, project of taxonatory, 10 - Feduron, 0 - Octiminal, E - Fracement, 01 - Feduron, 0 - Octiminal, E - Fracement, 01 - Feduron, 0 - Oction	Workload (hours)	162	Contact hours				

Name(s) of lecturer(s) Ângela Paula Barbosa da Silva Ferreira, Leandro Almeida Vasconcelos, Susana Sofia Alves Freitas

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to.

 1. model the power system components under steady state conditions;

 2. use the "per unit" system for power systems analysis;

 3. formulate the load flow problem through Gauss-Seidel, Newton-Raphson and fast decoupled load flow methods;

 4. solve load flow problems using computational tools;

 5. use computational tools to simulate symmetrical and unsymmetrical faults;

 6. understand the technological context related to the actual trends of DC-based energy systems and microgrids.

Prerequisites

Before the course unit the learner is expected to be able to:

- analyse linear circuits in direct current and alternate current (single-phase and three-phase);
 understand numerical methods to solve nonlinear equations;
 understand the fundamentals of electrical machines;

- 4. use programming languages.

Course contents

Transmission and distribution systems. The "per unit" system. Power systems analysis: mathematical models, load flow formulation (Gauss-Seidel, Newton-Raphson, fast decoupled load flow methods and the linearized model). Symmetrical faults.

Course contents (extended version)

- Introduction to power systems
 Historical evolution of electrical energy
 Energy sources: classical generation and distributed generation
 DC and AC energy transmission systems
 Electrical energy grids and micro grids
 The Portuguese utility
- 2. Basic concepts
 - Load diagrams Balanced three₋phase power analysis
- Load characteristics
- 3. The per unit system
 Definitions
 Base quantities
- Change of base
 Fundamental laws of power systems in per unit system
 Transmission and distribution lines
 Series resistance and inductance

- Capacitance and admittance
- Equivalent circuit under steady state conditions
 Thermal limit
 Power transmission capability

- 5. Load flow analysis
 Mathematical model

 - Marremainer moder
 Bus classification
 Solving load flow problems
 The Gauss-Seidel method
 The Newton-Raphson method

 - The fast decoupled load flow method
 The linearized model
- Symmetrical faults
 Models of network components under fault conditions
 - Fault calculations

Recommended reading

- J. Paiva, Redes de Energia Eléctrica, uma Análise Sistémica, IST Press, 4th edition, 2015
 J. Grainger, W. Stevenson, G. Chang, Power System Analysis, McGraw-Hill Education, 2nd edition, 2015
 A. C. Zambroni de Souza, M. Castilla, Microgrids Design and Implementation, Springer, 2018
 J. H. Chow; J. J. Sanchez-Gasca, Power System Modeling, Computation, and Control, John Wiley & Sons Ltd., 2019
 L. Powell, Power System Load Flow Analysis, McGraw-Hill, 2005

Teaching and learning methods

Theoretical classes: presentation of the course contents. Practical and laboratory classes: presentation of practical examples to support the expected learning outcomes; problem solving and critical analysis of the results. Non-presential hours: specific proposals on problem solving and accomplishment of evaluation work.

Assessment methods

1. Distributed assessment - (Regular, Student Worker) (Final, Supplementary)

Assessment methods

- Practical Work 15%
 Intermediate Written Test 15%
 Final Written Exam 70%
 2. Global assessment (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 100%

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation

Ângela Paula Barbosa da Silva Ferreira	José Luís Sousa de Magalhaes Lima	Orlando Manuel de Castro Ferreira Soares	José Carlos Rufino Amaro	
29-09-2023	11-10-2023	14-10-2023	31-10-2023	