

Unidade Curricular Máquinas Elétricas				Área Científica	Sistemas de Energia	
Licenciatura em Engenharia Eletrotécnica e de Computadores			Escola	Escola Superior de Tecnologia e de Gestão de Bragança		
Ano Letivo	2022/2023	Ano Curricular	2	Nível	1-2	Créditos ECTS 6.0
Tipo	Semestral	Semestre	2	Código	odigo 9112-742-2203-00-22	
Horas totais de trab	alho 162	Horas de Contacto				E OT O

Nome(s) do(s) docente(s) Ângela Paula Barbosa da Silva Ferreira

Resultados da aprendizagem e competências

No fim da unidade curricular o aluno deve ser capaz de:

- compreender a teoria de funcionamento e modelação de transformadores elétricos; descrever o funcionamento e aplicações de auto-transformadores e transformadores de medida;
- 3. compreender a teoria de funcionamento e modelação de máquinas de indução trifásicas e monofásicas;
 4. compreender a teoria de funcionamento e modelação de máquinas síncronas convencionais (circuito indutor de pólos salientes e rotor cilíndrico) e de máquinas de imanes permanentes e de relutância.

Pré-requisitos

- Antes da unidade curricular o aluno deve ser capaz de:
 1. compreender as equações de Maxwell em regime quasi-estacionário;
 2. utilizar cálculo vetorial e números complexos;
 3. analisar sistemas elétricos em corrente alternada, monofásica e trifásica.

Conteúdo da unidade curricular

Máquinas elétricas estáticas e rotativas: transformadores, máquinas de indução, máquinas síncronas convencionais de rotor clíndrico e de pólos salientes, máquinas de relutância e de ímanes permanentes.

Conteúdo da unidade curricular (versão detalhada)

- Aspetos comuns de máguinas elétricas
 - Circuitos elétricos, magnéticos e órgãos mecânicos Grandezas nominais e níveis de carga

 - Perdas e rendimento
- Normalização na área
 Criação de um campo girante
 Transformadores monofásicos e trifásicos
- - Constituição e aspetos construtivos
 Princípio de funcionamento
 Modelação e ensaios para determinação dos parâmetros
 Características externa e de rendimento
- Unidades trifásicas e bancos de transformadores; transformação trifásica usando dois transformadores
 Transformadores especiais

- Autotransformadores especiais
 Autotransformadores
 Transformadores
 Transformadores de medida
 Máquinas trifásicas de indução
 Constituição e princípio de funcionamento
 Modelação e ensaios para determinação dos parâmetros
 Potência e binário

- Potência e binário
 Características binário-velocidade (motor, gerador e freio)
 Arranque e estabilidade do motor de indução trifásico
 Variação da velocidade
 Gerador de indução duplamente alimentado
 Motor de indução monofásico
 Constituição e princípio de funcionamento
 Características principais e aplicações
 Máquinas síncronas convencionais
 Constituição e princípio de funcionamento (motor e gerador)
 Reação do induzido
 Características estáticas

 - Características estáticas Modelação e ensaios para determinação dos parâmetros
- Nicuralizado e ensiados para determinação dos paras en sistemas de excitação
 Funcionamento isolado do gerador síncrono
 Arranque dos motores síncronos
 Máquinas de ímanes permanentes e de relutância
 Constituição e princípios de funcionamento
 Tendências de evolução

Bibliografia recomendada

- S. J. Chapman, Electric Machinery Fundamentals, 5th Ed., McGraw Hill, 2011.
 S. L. Herman, Electrical Transformers and Rotating Machines, 4th Ed., Cengage Learning, 2016.
 J. F. Gieras, Electrical Machines, Fundamentals of Electromechanical Energy Conversion, CRC Press, 2020.
 J. F. Gieras, M. Wing, Permanent Magnet Motor Technology, 2nd Ed., Marcel Dekker, 2002.
 I. Boldea, Reluctance Synchronous Machines and Drives, Oxford University Press, 1996.

Métodos de ensino e de aprendizagem

Aulas teóricas: exposição dos conteúdos programáticos. Aulas práticas e laboratoriais: resolução de exercícios de modo a consolidar de forma integrada os conhecimentos adquiridos e realização de trabalhos laboratoriais, concretizando assim alguns problemas abordados de forma analítica.

Alternativas de avaliação

- Avaliação distribuída (Ordinário, Trabalhador) (Final, Recurso)

 Trabalhos Laboratoriais 40%
 Exame Final Escrito 60% (Exige-se uma classificação mínima de 25%.)

 Avaliação concentrada (Ordinário, Trabalhador) (Final, Recurso, Especial)

 Exame Final Escrito 100%

Língua em que é ministrada

Português, com apoio em inglês para alunos estrangeiros

Validação Eletrónica

Ângela Paula Barbosa da Silva Ferreira	José Luís Sousa de Magalhaes Lima	Orlando Manuel de Castro Ferreira Soares	José Carlos Rufino Amaro
26-02-2023	11-03-2023	15-03-2023	17-03-2023