

Course Unit	Electrical Machines			Field of study	Energy Systems			
Bachelor in	Electrical and Computers Engineering			School	School of Technology and Management			
Academic Year	2021/2022	Year of study	2	Level	1-2	ECTS credits 6.0		
Туре	Semestral	Semester	2	Code	9112-742-2203-00-21			
Workload (hours)	162	Contact hours	T 30 TP	- PL 30 T	c - s -	E - OT - O -		
T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other								

Name(s) of lecturer(s) Angela Paula Barbosa da Silva Ferreira

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to.

 1. understand the theory of operation and modelling of electric transformers;

 2. describe the operation and applications of autotransformers and instrument transformers;

 3. understand the theory of operation and modelling of single and three-phase induction machines;

 4. understand the theory of operation and modeling of conventional synchronous machines (wound rotor, salient and non-salient poles), permanent magnet machines and reluctance machines.

Prerequisites

- Before the course unit the learner is expected to be able to:
 1. understand the quasi-stationary approximation for the Maxwell's equations;
 2. use vector calculus and complex numbers;
 3. analyse single and three phase AC electrical systems.

Course contents

Transformers, induction machines, wound synchronous machines (salient and non salient poles), permanent magnet machines and reluctance machines.

Course contents (extended version)

- Introduction to machinery principles
 Electric circuits, magnetic circuits and mechanical parts
 Rated quantities and load regimes

 - Losses and efficiency - Codes and standards
- Rotating magnetic field concept
 Single and three-phase transformers
 Construction features
- - Theory of operation
 Modeling and experimental tests to determine the parameters
 Voltage regulation and efficiency
- Three-phase units and transformer banks; three-phase transformation using two transformers
- Special transformers
 Autotransformers
- Instrument transformers
 Three-phase induction machines

 - Construction features and theory of operation
 Modeling and experimental tests to determine the parameters in the machine model
 Power and torque
 Torque-speed characteristics (motor, generator and breaking modes)

 - Starting and stability of the three-phase induction motor Speed control of induction motors

- Speed control of induction finding
 Doubly fed induction generator
 Single-phase induction machines
 Construction features and theory of operation
 Major characteristics and applications
- Synchronous machines
 Construction features and theory of operation

 - Armature reaction
 Armature reaction
 Steady-state characteristics
 Modeling and experimental tests to determine the parameters in the machine model
 Exciters
- Synchronous generator operating alone
 Starting synchronous motors
 Permanent magnet and reluctance machines
 Construction features and theory of operation
 - Trends in machinery design

Recommended reading

- Electric Machinery Fundamentals, S. J. Chapman, 5th Ed., McGraw Hill, 2011
 Electrical Transformers and Rotating Machines, S. L. Herman, 4th Ed., Cengage Learning, 2016
 Electric Machines and Power Systems, Volume 1 Electric Machines, S. A. Nasar, McGraw Hill, 1995
 Permanent Magnet Motor Technology, J. F. Gieras, M. Wing, 2. ^a Edição, Marcel Dekker, 2002
 Reluctance Synchronous Machines and Drives, I. Boldec, Oxford University Press, 1996

Teaching and learning methods

Theoretical classes: presentation of the course contents. Practical and laboratory classes: problem solving to support the expected learning outcomes and laboratory experiments to realize in practice some issues treated analytically.

This document is valid only if stamped in all pages.

Assessment methods

- Distributed assessment (Regular, Student Worker) (Final, Supplementary)
 Laboratory Work 40%
 Final Written Exam 60% (It is required a minimum classification of 25%.)
 Global assessment (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 100%

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation

Ângela Paula Barbosa da Silva Ferreira	José Luís Sousa de Magalhaes Lima	Orlando Manuel de Castro Ferreira Soares	Paulo Alexandre Vara Alves	
01-03-2022	02-03-2022	21-03-2022	22-03-2022	