

| Course Unit      | Control Systems                      |               |   | Field of study | Automation and Control                        |                 |                             |
|------------------|--------------------------------------|---------------|---|----------------|-----------------------------------------------|-----------------|-----------------------------|
| Bachelor in      | Electrical and Computers Engineering |               |   | School         | School of Technology and Management           |                 |                             |
| Academic Year    | 2023/2024                            | Year of study | 2 | Level          | 1-2                                           | ECTS credits 6. | 0                           |
| Туре             | Semestral                            | Semester      | 2 | Code           | 9112-742-2202-00-23                           |                 |                             |
| Workload (hours) | 162                                  | Contact hours |   |                | C - S -<br>solving, project or laboratory; TC | E - OT -        | t; OT - Tutorial; O - Other |

Name(s) of lecturer(s)

Adriano Manuel Alves Ferreira, Getúlio Paulo Peixoto Igrejas

## Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Model physical systems, namely mechanical, electrical and thermal systems by establishing its differential equations and the state space equations that describe the system dynamics; 2. Find the transition
- Find the transient response and steady-state response of first and second order systems;
   Analyze and improve the system behavior recurring to the Root Locus analysis and Bode and Nyquist diagrams;
   Design and implement PID controllers and Lead/lag compensators by using time domain and frequency domain techniques on continuous and discrete domains;
   Understand the sample/hold ideal model and its effect in the control systems context; 4

- Apply and understand the different methods and tools for discrete system modeling;
   Characterize mathematically an open loop and closed loop hybrid control system on Z domain and space state;
   Use specific software to analyze, design and simulate control systems, MATLAB.

#### Prerequisites

- Before the course unit the learner is expected to be able to: 1. Perform differential and integral calculus;
- 2. Understand and calculate Laplace and Z transforms

# Course contents

Continuous domain control: Basic Concepts: stability, open loop systems, closed loop systems, Analysis and design of control systems: Root Locus, Bode diagrams and Nyquist diagrams, Lead/lag compensator and PID controllers; Discrete control: Sampling and reconstruction, Z transform, S to Z plane mapping, Sampling period, Digital control systems analysis, Design of digital PID controllers.

### Course contents (extended version)

- 1. Continuous time control
  - Continuous time control Basic Concepts: Stability, Performance characterization, Steady state performance criteria; Time domain specifications, Frequency domain specifications; First order open loop systems, Second order open loop systems; Feedback systems, Closed loop sensibility, Steady state error; First order closed loop systems, Second order closed loop systems; Open loop vs closed loop; Control system design: Root locus, Bode diagrams; PID controllers tuning, Ziegler and Nichols method; Bode diagrams design; Lead Lag compensator design:

- Bode diagrams design;
   Lead Lag compensator design;
   Discrete control
   Sampling process, Sampling distortion aspects, Quantification;
   Reconstruction, Ideal reconstruction, Real reconstruction, ZOH dynamic effect;
   Z transform, Inverse Z transform and difference equation;

  - Discrete system frequency response, Geometric evaluation of the frequency response;

  - Discrete systems stability;
    Continuous transfer functions discretization, Euler Forward e Backward, Bilinear transformation;
    Digital control systems analysis: Open loop sampled systems, Closed loop sampled systems;
    Stability analysis techniques, Discrete systems Routh-Hurwitz criteria, Jury criteria;
    Digital controller design: Zero order hold effect, Anti-aliasing filter effect, Design by emulation;

#### Recommended reading

- . K. Ogata, Modern Control Engineering, Prentice-Hall, 2001
- N. Sogata, Modern Control Engineering, Prentice-Frain, 2001
   D'Azzo, J., Linear Control Systems Analysis and Design: Conventional and Modern, McGraw-Hill, 1975
   Houpis, C., Lamont, G., Digital Control Systems: Theory, Hardware, Software, McGraw-Hill, 1992
   The Mechatronics Handbook, CRC Press, 2002
   Kilian, C., Modern Control Technology, Thomson Delmar Learning, 2006

# Teaching and learning methods

Theoretical lessons: Theoretical concepts presentation. Presentation, analysis and discussion of some application examples. Exercises. MATLAB simulation practical examples. Laboratory lessons: Support and orientation to the final work. Theoretical classes are taught in Portuguese. Laboratory classes in Portuguese with English support.

## Assessment methods

- Written exam + Project (Regular, Student Worker) (Final, Supplementary, Special)

   Practical Work 60% (It consists of a single piece of work to be carried out during the semester in laboratory classes;)
   Final Written Exam 40% (Minimum of 7 (seven, in a scale of twenty);)

   Written exam (Student Worker) (Final, Supplementary, Special)

   Final Written Exam 100% (Minimum of 9.5/20;)

   Mobility Students (Regular, Student Worker) (Final, Supplementary, Special)

   Projects 100% (Applies only to non-Portuguese-speaking mobile students.)

| Language of instruction |  |
|-------------------------|--|
| Portuguese              |  |
| Electronic validation   |  |

\_

|   | Electronic validation                                           |                                              |                                   |                          |  |
|---|-----------------------------------------------------------------|----------------------------------------------|-----------------------------------|--------------------------|--|
| ŀ | Adriano Manuel Alves Ferreira, Getúlio<br>Paulo Peixoto Igrejas | José Augusto de Almeida Pinheiro<br>Carvalho | José Luís Sousa de Magalhaes Lima | José Carlos Rufino Amaro |  |
|   | 06-03-2024                                                      | 06-03-2024                                   | 06-03-2024                        | 09-03-2024               |  |