

Course Unit	Control Systems			Field of study	Automation and Control		
Bachelor in	Electrical and Computers Engineering			School	School of Technology and Management		
Academic Year	2021/2022	Year of study	2	Level	1-2	ECTS credits	6.0
Туре	Semestral	Semester	2	Code	9112-742-2202-00-21		
Workload (hours)	162	Contact hours		15 PL 30 T	C - S - solving, project or laboratory; TC	E - OT - Fieldwork; S - Seminar; E - Place	- O -

Name(s) of lecturer(s)

Getúlio Paulo Peixoto Igrejas, Adriano Manuel Alves Ferreira

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Model physical systems, namely mechanical, electrical and thermal systems by establishing its differential equations and the state space equations that describe the system dynamics;
- Find the transient response and steady-state response of first and second order systems;
 Analyze and improve the system behavior recurring to the Root Locus analysis and Bode and Nyquist diagrams;
 Design and implement PID controllers and Lead/lag compensators by using time domain and frequency domain techniques on continuous and discrete domains;
 Understand the sample/hold ideal model and its effect in the control systems context; 4

- Apply and understand the different methods and tools for discrete system modeling;
 Characterize mathematically an open loop and closed loop hybrid control system on Z domain and space state;
 Use specific software to analyze, design and simulate control systems, MATLAB.

Prerequisites

- Before the course unit the learner is expected to be able to: 1. Perform differential and integral calculus;
- 2. Understand and calculate Laplace and Z transforms;

Course contents

Continuous domain control: Basic Concepts: stability, open loop systems, closed loop systems, Analysis and design of control systems: Root Locus, Bode diagrams and Nyquist diagrams, Lead/lag compensator and PID controllers; Discrete control: Sampling and reconstruction, Z transform, S to Z plane mapping, Sampling period, Digital control systems analysis, Design of digital PID controllers.

Course contents (extended version)

- 1. Continuous time control
 - Basic Concepts: Stability, Performance characterization, Steady state performance criteria;

 - Basic Concepts: Stability, Performance characterization, Steady stat
 Time domain specifications, Frequency domain specifications;
 First order open loop systems, Second order open loop systems;
 Feedback systems, Closed loop sensibility, Steady state error;
 First order closed loop systems, Second order closed loop systems;
 Open loop vs closed loop;
 Control system design: Root locus, Bode diagrams;
 PID controllers tuning, Ziegler and Nichols method;
 Bode diagrams design;
 Lead Lan compensator design:
- Bode diagrams design;
 Lead Lag compensator design;
 Discrete control
 Sampling process, Sampling distortion aspects, Quantification;
 Reconstruction, Ideal reconstruction, Real reconstruction, ZOH dynamic effect;
 Z transform, Inverse Z transform and difference equation;

 - Discrete system frequency response, Geometric evaluation of the frequency response;

 - Discrete systems stability;
 Continuous transfer functions discretization, Euler Forward e Backward, Bilinear transformation;
 Digital control systems analysis: Open loop sampled systems, Closed loop sampled systems;
 Stability analysis techniques, Discrete systems Routh-Hurwitz criteria, Jury criteria;
 Digital controller design: Zero order hold effect, Anti-aliasing filter effect, Design by emulation;

Recommended reading

- 1. K. Ogata, Modern Control Engineering, Prentice-Hall, 2001
- D'Azzo, J., Linear Control Engineering, Frentice Tain, 2001
 D'Azzo, J., Linear Control Systems Analysis and Design: Conventional and Modern, McGraw-Hill, 1975
 Houpis, C., Lamont, G., Digital Control Systems: Theory, Hardware, Software, McGraw-Hill, 1992
 The Mechatronics Handbook, CRC Press, 2002
 Kilian, C., Modern Control Technology, Thomson Delmar Learning, 2006

Teaching and learning methods

Theoretical lessons: Theoretical concepts presentation. Presentation, analysis and discussion of some application examples. Exercises. MATLAB simulation practical examples.

Assessment methods

- Written exams - (Regular, Student Worker) (Final, Supplementary, Special) - Final Written Exam - 100%

Language of instruction

Portuguese, with additional English support for foreign students

Electronic validation				
Getúlio Paulo Peixoto Igrejas	José Luís Sousa de Magalhaes	Lima Orlando Manuel de Castro Ferreira Soares	Paulo Alexandre Vara Alves	
14-03-2022	20-03-2022	21-03-2022	22-03-2022	