

Course Unit	ourse Unit Signals and Systems			Field of study	Telecommunications and Signal Processing		
Bachelor in	Electrical and Computers Engineering			School	School of Technology and Management		
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits	6.0
Туре	Semestral	Semester	1	Code	9112-742-2105-00-23		
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	E - OT Fieldwork; S - Seminar; E - Placer	- O - ment; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Fernando Jorge Coutinho Monteiro, José Luís Sousa de Magalhaes Lima, Felipe Lage Teixeira, Rui Vitor Pires Fernandes

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. differentiate between continuous and discrete signal and systems; 2. identify the properties of signal and of systems; 3. implement basic operations over signal; 4. understand the dual representation in time and frequency domains of the signals; 5. determine and understand the Fourier and Laplace transforms; 6. work in Matlab with signals and systems.

Prerequisites

- Before the course unit the learner is expected to be able to:

- have knowledge about mathematical summation;
 have knowledge about integral calculus;
 work with complex numbers and complex functions.

Course contents

Signals. Operations with signals. Characterisation of systems. LTI Systems. Signal processing mathematical tools under Matlab environment. Concepts of continuous signal processing, namely about Fourier Series, Fourier transform and Laplace transform. Signal representation in time and frequency domains. Relation between those representations.

Course contents (extended version)

- 1 Introduction to Matlab
- Variables Operations
- Functions Scripts
- Read and write files
 Some functions of the SP toolbox
- 2. Characterization of Signals
- Introduction

 - Introduction
 Definition of continuous-time signals and of discrete-time signals
 Properties of the signals: even signals; odd signals; periodicity
 Elementary signals: exponential; sinusoidal; complex exponential; step function; impulse function
 Basic operations with signals
 Determination of the average and root mean square value

- 3. Systems
- 3. Systems
 Introduction
 Model of a system
 Properties of systems
 4. Analysis of Linear Time Invariant Systems (LTI)
- Analysis of Enter Time Invariant Systems (ETI)

 Introduction
 Discrete LTI systems: impulse response; convolution.
 Continuous LTI systems: impulse response; convolution.
 Properties of convolution: commutative; distributive; associative.

 The Fourier Series

 Interduction
- Introduction
- Approximation of periodic functions
 Bepresentations of Fourier series: exponential; combined trigonometric; trigonometric.
- Spectral representation: magnitude spectra; phase spectra

- Properties of Fourier series
 Dirichlet conditions
 Continuous Time Fourier Transform
 Introduction

 - Definition of Fourier transform
 Definition of inverse Fourier transform

 - Properties of Fourier transform
 Basic Fourier transform pairs: constant signal; step function; sinusoidal; exponential
- 7. Laplace Transform - Introduction

 - Definition of Laplace transform
 Region of convergence

 - Inversion of the Laplace transform
 Properties of Laplace transform
 Initial and final value theorem

 - Basic Laplace transforms

Recommended reading

- Sinais e Sistemas, Simon Haykin, Barry Van Veen, Bookman, Porto Alegre 2001.
 Signals and Systems, Simon Haykin, Barry Van Veen, John Wiley & Marp; Sons, 1999.
 Sinais e Sistemas, Alan V. Oppenheim e Alan S. Willsky, 2^a edição, 2010. Pearson Education.
 Sinais e Sistemas, 570 problemas totalmente resolvidos. Hwei Hsu, 2011, Bookman.

This

Recommended reading

5. Caderno de Exercícios para Sinais e Sistemas + Conjunto de transparências para Sinais e Sistemas, J. P. Texeira

Teaching and learning methods

Sessions for presentation of the basic mathematical concepts on signals and on systems, accompanied by practical exercises in "paper and pencil" and in Matlab. The non-presence 4 weekly hours must be used for study, for realization of a set of exercises and for the development of works in Matlab.

Assessment methods

Unique - (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam - 75%
 Projects - 25% (2 short projects.)

Language of instruction

1. Portuguese 2. Portuguese, with additional English support for foreign students.

Electronic validation				
Fernando Jorge Coutinho Monteiro, José Luís Sousa de Magalhaes Lima	José Augusto de Almeida Pinheiro Carvalho	Orlando Manuel de Castro Ferreira Soares	José Carlos Rufino Amaro	
10-10-2023	10-10-2023	10-10-2023	20-10-2023	